Vol. 123
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-24
Composite Scattering of Ship on Sea Surface with Breaking Waves
By
Progress In Electromagnetics Research, Vol. 123, 263-277, 2012
Abstract
The composite backscattering of the ship model on sea surface is investigated with the spilling breaking waves and ship bow waves. The spilling breakers are approximately modeled with the wedge-like waves, and the ship bow waves are simulated based on the Kelvin model. With the modified four-path model, each scattering component is evaluated with the high frequency approximation methods for the total composite scattering. Due to the volume scattering, the composite scattering at large incidence angles is strongly enhanced by the non-Bragg scattering. The relationship of the composite scattering and the ship motion is analyzed. The numerical results of sea surface scattering agree with the measured data well, and the complex physical mechanism of the low-grazing-angle composite scattering is explicitly evaluated in this paper.
Citation
Min Zhang, Wei Luo, Gen Luo, Chao Wang, and Hong-Cheng Yin, "Composite Scattering of Ship on Sea Surface with Breaking Waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811
References

1. Xu, P., K.-S. Chen, and L. Tsang, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
doi:10.2528/PIER10072703

2. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

3. Chen, K.-S., L. Tsang, and J.-C. Shi, "Microwave emission from two-dimensional inhomogeneous dielectric rough surfaces based on physics-based two-grid method," Progress In Electromagnetics Research, Vol. 67, 181-203, 2007.
doi:10.2528/PIER06082903

4. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIER09091705

5. Zhang, M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

6. Luo, W., M. Zhang, Y. W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103

7. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast fourier transform," Journal of Electromagnetic Waves and Application, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

8. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/Mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

9. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
doi:10.2528/PIER07121703

10. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, and T. K. Chan, "Polarimetric scattering theory for high slope rough surface," Progress In Electromagnetics Research, Vol. 14, 1-36, 1996.

11. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modeling above gaussian rough surfaces by the parabolic shadowing effect," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.
doi:10.2528/PIER05090101

12. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

13. Oraizi, H. and S. Hosseinzadeh, "A novel marching algorithm for radio wave propagation modeling over rough surfaces," Progress In Electromagnetics Research, Vol. 57, 85-100, 2006.
doi:10.2528/PIER05051001

14. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-Smcg method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

15. Lee, P. H. Y., et al. "Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces," IEEE Trans. on Antennas and Propagat., Vol. 44, No. 3, 333-340, 1996.
doi:10.1109/8.486302

16. Walker, D., "Doppler modelling of radar sea clutter," IEE Proceedings, Radar, Sonar and Navigation, Vol. 148, No. 2, 73-80, 2001.
doi:10.1049/ip-rsn:20010182

17. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. on Geosci. and Remote Sens., Vol. 40, No. 3, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318

18. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. on Geosci. and Remote Sens., Vol. 40, No. 2, 523-526, 2002.
doi:10.1109/36.992830

19. Zhao, Z. Q. and J. C. West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. on Geosci. and Remote Sens., Vol. 43, No. 2, 286-294, 2005.
doi:10.1109/TGRS.2004.840644

20. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

21. Kudryavtsev, V., D. Hauser, G. Caudal, and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface 1. background model," J. Geophys. Res., Vol. 108, No. C3, 8054, 2003.
doi:10.1029/2001JC001003

22. Kalmykov, A. I. and V. V. Pustovoytenko, "On polarization features of radio signals scattered from the sea surface at small grazing angles," J. Geophys. Res., Vol. 81, No. 12, 1960-1964, 1976.
doi:10.1029/JC081i012p01960

23. Kwoh, D. S. W. and B. M. Lake, "A deterministic, coherent and dual-polarized laboratory study of microwave backscattering from water waves, Part I: Short gravity waves without wind," IEEE Journal of Oceanic Engineering, Vol. 9, No. 5, 291-308, 1984.
doi:10.1109/JOE.1984.1145638

24. Lyzenga, D. R., A. L. Maffett, and R. A. Shuchman, "The contribution of wedge scattering to the radar cross section of the ocean surface," IEEE Trans. on Geosci. and Remote Sens., Vol. GE-21, No. 4, 502-505, 1983.
doi:10.1109/TGRS.1983.350513

25. Ericson, E. A. and D. R. Lyzenga, "Performance of a numerical iterative solution of the surface current integral equation for surfaces containing small radii of curvature," Radio Sci., Vol. 33, No. 2, 205-217, 1998.
doi:10.1029/97RS03783

26. Lyzenga, D. R. and E. A. Ericson, "Numerical calculations of radar scattering from sharply peaked ocean waves," IEEE Trans. on Geosci. and Remote Sens., Vol. 36, No. 2, 636-646, 1998.
doi:10.1109/36.662744

27. Tunaley, J. K. E., E. H. Buller, K. H. Wu, and M. T. Rey, "The simulation of the SAR image of a ship wake," IEEE Trans. on Geosci. and Remote Sens., Vol. 29, No. 1, 149-156, 1991.
doi:10.1109/36.103305

28. Ai, J., X. Qi, W. Yu, et al. "A novel ship wake CFAR detection algorithm based on SCR enhancement and normalized hough transform," IEEE Trans. on Geosci. and Remote Sens., Vol. 8, No. 4, 681-685, 2011.
doi:10.1109/LGRS.2010.2100076

29. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from 3-D breaking SeaWaves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

30. Shakeri, M., M. Tavakolinejad, and J. H. Duncan, "An experimental investigation of divergent bow waves simulated by a two-dimensional plus temporal wave marker technique," J. Fluid Mech., Vol. 634, 217-243, 2009.
doi:10.1017/S0022112009007216

31. Hennings, R. R., W. Alpers, and A. Viola, "Radar imaging of kelvin arms of ship wakes," Int. J. Remote Sensing, Vol. 20, No. 13, 2519-2543, 1999.
doi:10.1080/014311699211912

32. Ando, M., T. Murasaki, and T. Kinoshita, "Elimination of false singularities in GTD equivalent edge currents," IEE Proceedings H Microwaves, Antennas and Propagation, Vol. 138, 289-296, 1991.
doi:10.1049/ip-h-2.1991.0049

33. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE Journal of Oceanic Engineering, Vol. 7, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

34. Soriano, G., M. Joelson, and M. Saillard, "Doppler spectra from a two-dimensional ocean surface at L-band," IEEE Trans. on Geosci. and Remote Sens., Vol. 44, 2430-2437, 2006.
doi:10.1109/TGRS.2006.873580

35. Chen, H., M. Zhang, Y. Zhao, and W. Luo, "An efficient slope-deterministic facet model for SAR imagery simulation of marine scene," IEEE Trans. on Antennas and Propagat., Vol. 58, No. 11, 3751-3756, 2010.
doi:10.1109/TAP.2010.2071349

36. Guinard, N. W., J. T. Ransone, and J. C. Daley, "Variation of the NRCS of the sea with increasing roughness," J. Geophys. Res., Vol. 76, 1525-1538, 1971.
doi:10.1029/JC076i006p01525