Vol. 122
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-08
Improving the Reliability of Frequency Domain Simulators in the Presence of Homogeneous Metamaterials - a Preliminary Numerical Assessment
By
Progress In Electromagnetics Research, Vol. 122, 497-518, 2012
Abstract
The accuracy of the finite difference frequency domain (FDFD) method in the solution of canonical waveguide discontinuity problems involving complementary or nearly complementary metamaterials (MTMs) is analytically discussed. It is shown that the good accuracy of the method (in comparison with other frequency-domain techniques) is due to the intrinsic approximation which it introduces in the finite-difference discretization of sharp dielectric interfaces. By exploiting such a result, a perturbation algorithm is proposed for the reliable modeling of MTMs devices when other frequency domain numerical methods are at disposal. A preliminary numerical analysis is carried out to assess the reliability and accuracy of the proposed modeling approach when canonical scattering problems are at hand.
Citation
Giacomo Oliveri, "Improving the Reliability of Frequency Domain Simulators in the Presence of Homogeneous Metamaterials - a Preliminary Numerical Assessment," Progress In Electromagnetics Research, Vol. 122, 497-518, 2012.
doi:10.2528/PIER11100808
References

1. Ziolkowski, R. W. and N. Engheta, "Special issue on metamaterials," IEEE Trans. on Antennas and Propag., Vol. 51, Oct. 2003.

2. Itoh, T. and A. A. Oliner, "Special issue on metamaterials structures, phenomena and applications," IEEE Trans. on Microwave Theory and Tech., Vol. 53, Apr. 2005.

3. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

4. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

5. He, Y., J.-Q. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011.

6. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.

7. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.

8. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

9. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

10. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

11. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507

12. Wang, B. and K.-M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.

13. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.

14. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

15. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

16. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces," IEEE Trans. on Microwave Theory and Tech., Vol. 57, No. 11, 2692-2699, Nov. 2009.
doi:10.1109/TMTT.2009.2032458

17. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B, Vol. 23, 391-403, 2006.
doi:10.1364/JOSAB.23.000391

18. Erentok, A. and R. W. Ziolkowski, "HFSS modeling of a dipole antenna enclosed in an epsilon-negative (ENG) metamaterial shell," IEEE Antennas and Propagation Society International Symposium, 22-25, Washigton DC, USA, Jul. 2005.

19. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," J. Appl. Physics, Vol. 90, No. 11, 5483-5486, 2001.
doi:10.1063/1.1408261

20. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

21. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.

22. Cevini, G., G. Oliveri, and M. Raffetto, "Further comments on the performances of finite element simulators for the solution of electromagnetic problems involving metamaterials ," Microw. Opt. Tech. Lett., Vol. 48, No. 12, 2524-2529, Dec. 2006.
doi:10.1002/mop.22008

23. Oliveri, G. and M. Raffetto, "A warning about metamaterials for users of frequency-domain numerical simulators," IEEE Trans. on Antennas and Propag., Vol. 56, No. 3, 792-798, Mar. 2008.
doi:10.1109/TAP.2008.916955

24. Raffetto, M., "Ill posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports," IET Proc. Sci. Measur. Tech., Vol. 1, No. 5, 221-239, Sept. 2007.

25. Oliveri, G. and M. Raffetto, "An assessment by a commercial software of the accuracy of electromagnetic finite element simulators in the presence of metamaterials," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL, Vol. 27, No. 6, 1260-1272, 2008.
doi:10.1108/03321640810905747

26. Oliveri, G. and M. Raffetto, "Accuracy of finite difference frequency domain methods in the presence of effective metamaterials," Proceedings of the European Microwave Conference, 27-31, Amsterdam, NL, Oct. 2008.

27. Bozza, G., G. Oliveri, and M. Raffetto, "Unusual ill-posed waveguide discontinuity problems: a comparison of frequency domain numerical methods," 9th International Workshop on Finite Elements for Microwave Engineering, 8-9, Bonn, Germany, May 2008.

28. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetic Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

29. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

30. COMSOL, Inc., , COMSOL multiphysics 3.4, Jul. 2008, http://-www.comsol.com/.

31. Cevini, G., G. Oliveri, and M. Raffetto, "Performances of electromagnetic finite element simulators in the presence of three-dimensional double negative scatterers," IET Proc. Microwav. Antennas Propag., Vol. 1, No. 3, 737-745, Jun. 2007.
doi:10.1049/iet-map:20060293

32. Yee, K., "Numerical solution of inital boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. on Antennas and Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

33. Clemens, M. and T. Weiland, "Numerical algorithms for the FDiTD and FDFD simulation of slowly varying electromagnetic fields," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1-2, 3-22, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<3::AID-JNM326>3.0.CO;2-5

34. Champagne, N. J., J. G. Berryman, and H. M. Buettner, "FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography," J. Comp. Physics, Vol. 170, No. 2, 830-848, Jul. 2001.
doi:10.1006/jcph.2001.6765

35. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992.

36. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1909-1916, Aug. 2004.
doi:10.1109/TMTT.2004.832016

37. Oliveri, G., P. Rocca, and A. Massa, "A bayesian compressive sampling-based inversion for imaging sparse scatterers," IEEE Trans. on Geosci. and Remote Sens., Vol. 49, No. 10, 3993-4006, Oct. 2011.
doi:10.1109/TGRS.2011.2128329

38. Oliveri, G., Y. Zhong, X. Chen, and A. Massa, "Multi-resolution subspace-based optimization method for inverse scattering," J. Optical Soc. Am. A, Vol. 40, No. 10, 2057-2069, Oct. 2011.

39. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Probl., Vol. 25, No. 12, 1-41, Dec. 2009.
doi:10.1088/0266-5611/25/12/123003

40. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 38-49, Feb. 2011.
doi:10.1109/MAP.2011.5773566