Vol. 123
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-12
Design of a V-Band High-Power Sheet-Beam Coupled-Cavity Traveling-Wave Tube
By
Progress In Electromagnetics Research, Vol. 123, 31-45, 2012
Abstract
The design and analysis of a high-power wideband sheet-beam coupled-cavity traveling-wave tube operating at V-band is presented. The interaction circuit employs three-slot doubly periodic staggered-ladder coupled-cavity slow-wave structure, and a 5 : 1 aspect-ratio sheet electron beam is used to interact with the circuit. Combined with design of the well-matched input and output couplers, a 3-D particle-in-cell model of the sheet-beam coupled-cavity traveling-wave tube is constructed. The electromagnetic characteristics and the beam-wave interaction of the tube are investigated. From our calculations, this tube can produce saturated output power over 630 Watts ranging from 58 GHz to 64 GHz when the cathode voltage and beam current are set to 13.2 kV and 300 mA, respectively. The corresponding saturated gain and electron efficiency can reach over 32.5 dB and 15.9%. Compared with the circular beam devices, the designed sheet-beam TWT has absolute advantage in power capability, and also it is more competitive in bandwidth and electron efficiency.
Citation
Yang Liu, Jin Xu, Yan-Yu Wei, Xiong Xu, Fei Shen, Minzhi Huang, Tao Tang, Wen-Xiang Wang, Yu-Bin Gong, and Jinjun Feng, "Design of a V-Band High-Power Sheet-Beam Coupled-Cavity Traveling-Wave Tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906
References

1. Kornfeld, G. K., E. Bosch, W. Gerum, and G. Fleury, "60-GHz space TWT to address future market," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.
doi:10.1109/16.892169

2. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305

3. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505

4. Kesari, V. and J. P. Keshari, "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207

5. Mustafa, F. and A. M. Hashim, "Properties of electromagnetic fields and effective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
doi:10.2528/PIER10041504

6. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytical design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2479-2494, 2010.
doi:10.1163/156939310793675745

7. Li, Z., J. H. Wang, F. Li, Z. Zhang, and M. Chen, "A new insight into the radiation mechanism of fast and slow traveling waves," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1874-1885, 2011.
doi:10.1163/156939311797454006

8. Shi, Z. J., Z. Q. Yang, F. Lan, G. Xi, F. Tao, and Z. Liang, "Investigation of a 30-GHz relativistic diffraction generator with a coaxial reflector," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2453-2462, 2010.
doi:10.1163/156939310793675682

9. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
doi:10.2528/PIER09092604

10. Wilson, J. D., P. Ramins, and D. A. Force, "A high-effciency 59 to 64 GHz TWT for intersatellite communications," Proc. IEDM Tech. Dig., 585-588, 1991.

11. Liu, Y., Y. B. Gong, Y. Y. Wei, J. Xu, Z. Y. Duan, and W. X. Wang, "Design of a 100-W V-band coupled-cavity," China-Japan Joint Microwave Conference (CJMW), 458-460, Hangzhou, China, 2011.

12. Cooke, S. J., B. Levush, T. M. Antonsen, and Jr., "A coupled-cavity slow-wave structure for sheet-beam devices," Proc. IEEE Int. Vac. Electron. Conf., 487-488, Monterey, CA, 2006.

13. Larsen, P. B., D. K. Abe, S. J. Cooke, B. Levush, T. M. Antonsen, Jr., and R. E. Myers, "Characterization of a Ka-band sheet-beam coupled-cavity slow-wave structure," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1244-1254, Jun. 2010.
doi:10.1109/TPS.2010.2043690

14. Shin, Y. M., L. R. Barnett, N. C. Luhmann, and Jr., "Phase-shift traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Trans. Electron Devices, Vol. 56, No. 5, 706-712, May 2009.
doi:10.1109/TED.2009.2015404

15. Han, S. T., K. H. Jang, J. K. So, J. I. Kim, Y. M. Shin, N. M. Ryskin, S. S. Chang, and G. S. Park, "Low-voltage operation of ka-band folded waveguide traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 32, No. 1, 60-66, Feb. 2004.
doi:10.1109/TPS.2004.823978

16. Kim, H. J., H. J. Kim, and J. J. Choi, "MAGIC3D simulations of a 500-W Ka-band coupled-cavity traveling-wave tube," IEEE Trans. Electron Devices, Vol. 56, No. 1, Jan. 2009.

17. Ansoft HFSS User's Reference, Ansoft Corp. [Online] Available: http://www.ansoft.com.cn/.

18. CST MWS Tutorials, CST Corp. [Online] Available: http://www.cst-china.cn/.

19. CST PS Tutorials, CST Corp. [Online] Available: http://www.cst-china.cn/.

20. James, B. G. and P. Kolda, "A ladder circuit coupled-cavity TWT at 80--100 GHz," Proc. IEDM Tech. Dig., Vol. 32, 494-497, 1986.

21. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter wave traveling wave tubes," IEEE Trans. Electron Devices, Vol. 52, No. 5, 685-693, May 2005.
doi:10.1109/TED.2005.845798

22. Pierce, J. R., Traveling-wave Tubes, Van Nostrand, 1965.

23. Christie, V. L., M. Sumathy, L. Kumar, and S. Prasad, "Optimization of waveguide coupler for coupled-cavity TWT using artificial neural network," Proc. IEEE International Vacuum Electronics Conference (IVEC), 263-264, 2010.
doi:10.1109/IVELEC.2010.5503501

24. Kageyama, T., "The design of the transition region in coupled-cavity TWT," Proc. IEEE International Vacuum Electronics Conference (IVEC), 102-103, 2002.

25. Larsen, P. B., D. K. Abe, B. Levush, T. M. Antosen, and Jr., "Coupling a waveguide input to a sheet-beam coupled-cavity slowe-wave structure," Proc. IEEE International Vacuum Electronics Conference (IVEC), 209-210, 2011.
doi:10.1109/IVEC.2011.5746949

26. Wilson, J. D. and C. L. Kory, "Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube," IEEE Trans. Electron Devices, Vol. 42, No. 11, Nov. 1995.

27. Tischer, F. J., "Excess conduction losses at millimeter wave-lengths," IEEE Trans. Microw. Theory Tech., Vol. 24, 853-858, Nov. 1976.
doi:10.1109/TMTT.1976.1128973

28. Gilmour, A. S., Jr., Principles of Traveling-Wave Tubes, Artech House, 1994.

29. Nguyen, K. T., J. A. Pasour, T. M. Antonsen, Jr., P. B. Larsen, J. J. Petillo, and B. Levush, "Intense sheet electron beam transport in a uniform solenoidal magnetic field," IEEE Trans. Electron Devices, Vol. 55, No. 5, 744-752, May 2009.
doi:10.1109/TED.2009.2015420

30. Wilson, J. D., "Design of high-efficiency wide-bandwidth coupled-cavity traveling-wave tube phase velocity tapers with simulated annealing algorithms," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.
doi:10.1109/16.892174