Vol. 122
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-11-05
Experimental and Theoretical Studies of a Broadband Superluminality in Fabry-Perot Interferometer
By
Progress In Electromagnetics Research, Vol. 122, 1-13, 2012
Abstract
This study experimentally demonstrates a broadband (20%) superluminality in a Fabry-Pérot-like interferometer implemented on a waveguide system. A narrow wave packet propagating with an efective group velocity of 5.29 +4.28 -1.70 c without distortion was observed. The underlying mechanism is attributed to the multiple-reflection interference and the modal effect, which provide an approach for controlling the wave characteristics through manipulating the geometry of the system. Besides, the criteria of the renowned generalized Hartman effect are explicitly clarified.
Citation
Hsin-Yu Yao, and Tsun-Hun Chang, "Experimental and Theoretical Studies of a Broadband Superluminality in Fabry-Perot Interferometer," Progress In Electromagnetics Research, Vol. 122, 1-13, 2012.
doi:10.2528/PIER11092707
References

1. Stenner, M. D., D. J. Gauthier, and M. A. Neifeld, "The speed of information in a fast-light optical medium," Nature, Vol. 94, 695-698, 2005.

2. Manipatruni, S., P. Dong, Q. Xu, and M. Lipson, "Tunable superluminal propagation on a silicon microchip," Opt. Lett., Vol. 33, 2928, 2008.
doi:10.1364/OL.33.002928

3. Thevenaz, L., "Slow and fast light in optical fibers," Nature Photonic, Vol. 2, 474-481, 2008.
doi:10.1038/nphoton.2008.147

4. Akulshin, A. M., S. Barreiro, and A. Lezama, "Steep anomalous dispersion in coherently prepared Rb vapor," Phys. Rev. Lett., Vol. 83, 4277-4280, 1999.
doi:10.1103/PhysRevLett.83.4277

5. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808

6. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801

7. Wu, J.-W., F.-G. Luo, and Q.-T. Zhang, "Raman amplification and superluminal propagation of ultrafast pulses based on loop silicon waveguides: Theoretical modeling and performance," Progress In Electromagnetics Research, Vol. 79, 291-304, 2008.
doi:10.2528/PIER07101102

8. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

9. Winful, H. G., "Delay time and the hartman effect in quantum tunneling," Phys. Rev. Lett., Vol. 91, 260401, 2003.
doi:10.1103/PhysRevLett.91.260401

10. Steinberg, A. M., P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett., Vol. 71, No. 5, 708-711, 1993.
doi:10.1103/PhysRevLett.71.708

11. Enders, A. and G. Nimtz, "Photonic-tunneling experiments," Phys. Rev. B, Vol. 47, No. 15, 9605-9609, 1993.
doi:10.1103/PhysRevB.47.9605

12. Pablo, A., L. Barbero, H. E. Hernández-Figueroa, and E. Recami, "Propagation speed of evanescent modes," Phys. Rev. E, Vol. 62, No. 6, 8628-8635, 2000.
doi:10.1103/PhysRevE.62.8628

13. Ranfagni, A., D. Mugnai, P. Fabeni, and G. P. Pazzi, "Delay time measured in narrowed waveguides as a test of tunneling," Appl. Phys. Lett., Vol. 58, 774-776, 1991.
doi:10.1063/1.104544

14. Winful, H. G., "Group delay, stored energy, and the tunneling of evanescent electromagnetic waves," Phys. Rev. E, Vol. 68, 016615, 2003.
doi:10.1103/PhysRevE.68.016615

15. Winful, H. G., "Nature of superluminal barrier tunneling," Phys. Rev. Lett., Vol. 90, 023901, 2003.
doi:10.1103/PhysRevLett.90.023901

16. Nimtz, G., A. Haibel, and R.-M. Vetter, "Pulse reflection by photonic barriers," Phys. Rev. E, Vol. 66, 037602, 2003.

17. Spielmann, C., R. Szipocs, A. Stingl, and F. Krausz, "Tunneling of optical pulses through photonic band gap," Phys. Rev. Lett., Vol. 73, No. 17, 2308-2311, 1994.
doi:10.1103/PhysRevLett.73.2308

18. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer," Progress In Electromagnetics Research, Vol. 118, 151-165, 2011.
doi:10.2528/PIER11040202

19. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterial," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.

20. Winful, H. G., "Apparent superluminality and the generalized Hartman effect in double-barrier tunneling," Phys. Rev. E, Vol. 72, 046608, 2005.
doi:10.1103/PhysRevE.72.046608

21. Longhi, S. and P. Laporta, "Measurement of superluminal optical tunneling times in double-barrier photonic band gaps," Phys. Rev. E, Vol. 65, 046610, 2002.
doi:10.1103/PhysRevE.65.046610

22. Esposito, S., "Multibarrier tunneling," Phys. Rev. E, Vol. 67, 016609-2003.

23. Wu, C.-J., Y.-N. Rau, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610

24. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal ," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

25. Gupta, S. K. and K. J. Vinoy, "A compact defected ground microstrip device with photonic bandgap effects," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 255-266, 2009.
doi:10.1163/156939309787604553

26. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643

27. Yao, H.-Y. and T.-H. Chang, "Effect of high-order modes on tunneling characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
doi:10.2528/PIER09121603

28. Yuan, C. P. and T. H. Chang, "Modal analysis of metal-stub photonic band gap structure in a parallel-plate waveguide ," Progress In Electromagnetics Research, Vol. 119, 345-361, 2011.
doi:10.2528/PIER11050601

29. Armeanu, A. M., K. Edee, G. Granet, and P. Schiavone, "Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating," Progress In Electromagnetics Research, Vol. 106, 243-261, 2010.
doi:10.2528/PIER10021902

30. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Modal analysis of bi-isotropic H-guides," Progress In Electromagnetics Research, Vol. 111, 1-24, 2011.
doi:10.2528/PIER10093004

31. Amin, A. S. N., M. Mirhosseini, and M. Shahabadi, "Modal analysis of multilayer conical dielectric waveguides for azimuthal invariant modes," Progress In Electromagnetics Research, Vol. 105, 213-229, 2011.

32. Maleki Javan, A. R. and N. Granpayeh, "Fast terahertz wave switch/modulator based on photonic crystal structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 203-212, 2009.
doi:10.1163/156939309787604571

33. Landauer, R. and T. Martin, "Barrier interaction time in tunneling," Rev. Mod. Phys., Vol. 66, No. 1, 217-228, 1194.
doi:10.1103/RevModPhys.66.217