Vol. 21
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-13
Excitation of Ion Azimuthal Surface Modes in a Magnetized Plasma by Annular Flow of Light Ions
By
Progress In Electromagnetics Research M, Vol. 21, 267-278, 2011
Abstract
The excitation of ion azimuthal surface oscillations with extraordinary polarization by light ion beam is studied analytically. Beam-plasma system consists of a cylindrical metal waveguide filled partially by cold magnetized plasma and light ion flow rotating around the plasma column. Dependencies of the beam instability growth rate on the system parameters (plasma and beam densities, value of the external axial magnetic field, radius of the plasma column, width of the gap between the plasma column and the waveguide wall, absolute value and sign of the azimuthal wave number) are analyzed numerically.
Citation
Igor O. Girka, Volodymyr Girka, and Ivan Viktorovych Pavlenko, "Excitation of Ion Azimuthal Surface Modes in a Magnetized Plasma by Annular Flow of Light Ions," Progress In Electromagnetics Research M, Vol. 21, 267-278, 2011.
doi:10.2528/PIERM11092205
References

1. Humphries, S., Charged Particle Beams, John Wiley and Sons Inc., New York, 1990.

2. Kiyoshi, Y., "Industrial applications of pulse power and particle beams," Laser and Particle Beams, Vol. 7, No. 4, 733-741, 1989.
doi:10.1017/S0263034600006200

3. Miller, R. B., An Introduction to the Physics of Intense Charged Particle Beams, Plenum Press, New York, 1982.
doi:10.1007/978-1-4684-1128-7

4. Remnev, G. E. and V. A. Shylov, "Application of high-power ion beams for technology," Laser and Particle Beams, Vol. 11, No. 4, 707-731, 1993.
doi:10.1017/S0263034600006467

5. Gisler, G. R., "Particle-in-cell simulations of azimuthal instabil-ities in relativistic electron layers," Phys. Fluids, Vol. 30, No. 7, 2199-2208, 1987.
doi:10.1063/1.866154

6. Kainer, S., J. D. Gaffey, C. P. Price, et al. "Nonlinear wave interactions and evolution of a ring-beam distribution of energetic electrons," Phys. Fluids, Vol. 31, No. 8, 2238-2248, 1988.
doi:10.1063/1.867003

7. Saito, H. and J. S. Wurtele, "The linear theory of the circular free-electron laser," Phys. Fluids, Vol. 30, No. 7, 2209-2220, 1987.
doi:10.1063/1.866155

8. Kho, T. H., A. T. Lin, and L. Chen, "Gyrophase-coherent electron cyclotron maser," Phys. Fluids, Vol. 31, No. 10, 3120-3126, 1988.
doi:10.1063/1.866968

9. Barker, R. J. and E. Schamiloglu, High-power Microwave Sources and Technologies, IEEE Press, New York, 2001.
doi:10.1109/9780470544877

10. Wu, J., C. Xiong, and S. Liu, "Excitation of microwave by an annular electron beam in a plasma-filled dielectric lined waveguide," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 9, 1573-1581, 1995.
doi:10.1007/BF02274817

11. Norreys, P. A., J. S. Green, J. R. Davies, et al. "Observation of annular electron beam transport in multi-TeraWatt laser-solid interactions," Plasma Physics and Controlled Fusion, Vol. 48, No. 2, L11-L22, 2006.
doi:10.1088/0741-3335/48/2/L01

12. Vucovic, S., Surface Waves in Plasma and Solids, World Scientific, Singapore, 1986.

13. Girka, V. O., I. O. Girka, A. V. Girka, and I. V. Pavlenko, "Theory of azimuthal surface waves propagating in non-uniform waveguides," J. of Plasma Physics, Vol. 77, Part 4, 493-519, 2011.

14. Girka, V. O., I. O. Girka, and I. V. Pavlenko, "Excitation of azimuthal surface modes by relativistic flows of electrons in high-frequency range," Plasma Physics Reports, Vol. 37, No. 5, 447-454, 2011.
doi:10.1134/S1063780X11040052

15. Girka, V. O., I. O. Girka, Y. I. Morgal, and I. V. Pavlenko, "Excitation of azimuthal surface modes by annular electron beams in the electron cyclotron frequency range," Physica Scripta, Vol. 84, 025505, 2011.

16. Girka, I. O. and P. K. Kovtun, "Azimuthal surface waves in a magnetized plasma," Technical Physics, Vol. 43, No. 12, 1424-1427, 1998.
doi:10.1134/1.1259217

17. Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973.

18. Herlah, F., Strong and Ultrastrong Magnetic Fields and their Applications, Springer, Berlin, 1985.
doi:10.1007/3-540-13504-9

19. Ivanov, B. I. and N. G. Shulika, "Influence of longitudinal focusing on changing the transversal emittance in accelerating the high-current proton beam," Problems of Atomic Science and Technology, No. 4, Series: Plasma Electronics and New Methods of Acceleration, No. 4, 133-138, 2004 (in Russian)..

20. Dominic Chan, K. C., G. P. Lawrence, and J. D. Schneider, "Development of RF linac for high-current applications," Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 139, No. 1-4, 394-400, 1998.

21. Malek, M. F. B. A., J. Lucas, and Y. Huang, "The engineering and construction of a pre-bunched free electron maser," Progress In Electromagnetics Research, Vol. 95, 19-38, 2009.
doi:10.2528/PIER09060803

22. Ederra, I., J. C. Iriarte, R. Gonzalo, and P. de Maagt, "Surface waves of finite size electromagnetic band gap woodpile structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011.

23. Kumar, V., M. Mishra, and N. K. Joshi, "Study of a fluorescent tube as plasma antenna," Progress In Electromagnetics Research Letters, Vol. 24, 17-26, 2011.

24. Wu, M., B. Y.Wen, and H. Zhou, "Ionospheric clutter suppression in the surface wave radar," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1265-1272, 2009.
doi:10.1163/156939309789108570

25. Girka, V. O. and I. O. Girka, "Emission of azimuthal surface waves from narrow waveguide slot," Soviet Journal of Communications Technology and Electronics, Vol. 37, No. 9, 32-35, 1992.