Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-28
Low-Frequency Scattering Analysis and Homogenisation of Split-Ring Elements
By
Progress In Electromagnetics Research B, Vol. 35, 187-212, 2011
Abstract
A key structure in so-called metamaterial mediums is the elementary split-ring resonator. We consider in this paper the low-frequency electromagnetic scattering by a split-ring particle modelled as a perfectly conducting wire ring, furnished with a narrow gap, and derive analytical solutions for the electric and magnetic dipole moments for different kinds of incidence and polarisation in the quasi-static approximation. Through a vectorial homogenisation process, the expressions discovered for the dipole moments and the related polarisability dyadics are linked with the macroscopic constitutive equations for the medium. We further show that the condition for resonance of a medium consisting of simple split-rings cannot be achieved by means of the given quasi-static terms without violating the underlying assumptions of homogenisation. Nevertheless, the results are applicable for sparse medium of rings, and we derive numerical guidelines for the applicability with some examples of the effect of the considered split-ring medium on electromagnetic wave propagation.
Citation
Johan Sten, and Daniel Sjöberg, "Low-Frequency Scattering Analysis and Homogenisation of Split-Ring Elements," Progress In Electromagnetics Research B, Vol. 35, 187-212, 2011.
doi:10.2528/PIERB11090606
References

1. Engheta, N. and R. W. Ziolkowski (eds.), Electromagnetic Metamaterials: Physics and Engineering Explorations, Wiley, 2006.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Microw. Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

3. Merlin, R., "Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism," Proc. Nat. Acad. Sci., Vol. 106, No. 6, 1693-1698, Feb. 10, 2009.
doi:10.1073/pnas.0808478106

4. Simovski, C. R. and B. Sauviac, "Toward creating isotropic microwave composites with negative refraction," Radio Science, Vol. 39, 1-18, 2004, RS2014.

5. Lewellyn Smith, S. G. and A. M. J. Davis, "The split ring resonator," Proc. R. Soc. A, Vol. 466, 3117-3134, 2010.
doi:10.1098/rspa.2010.0047

6. Movchan, A. B. and S. Guenneau, "Split-ring resonators and localized modes," Phys. Rev. B, Vol. 70, 125116, 2004.
doi:10.1103/PhysRevB.70.125116

7. Popa, B.-I. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 1000, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401

8. Jones, D. S., "Low frequency electromagnetic radiation," J. Inst. Maths Applics, Vol. 23, 421-447, 1979.
doi:10.1093/imamat/23.4.421

9. Stevenson, A. F., "Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer)/wavelength," J. Appl. Phys., Vol. 24, 1134-1142, 1953.
doi:10.1063/1.1721461

10. Kleinman, R. E. and T. B. A. Senior, "Rayleigh scattering," Low and High Frequency Asymptotics, 1-70, V. K. Varadan and V. V. Varadan (eds.), North-Holland, 1986.

11. Arvas, E., R. F. Harrington, and J. R. Mautz, "Radiation and scattering from electrically small conducting bodies of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 34, No. 1, 66-77, Jan. 1986.
doi:10.1109/TAP.1986.1143716

12. Van Bladel, J., Electromagnetic Fields, 2nd Ed., IEEE Press & Wiley Interscience, 2007.
doi:10.1002/047012458X

13. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

14. Hadad, Y. and B. Z. Steinberg, "Electrodynamic synergy of micro-properties and macro-structure in particle arrays," 2010 URSI Electromagnetic Theory Symposium, 839-842, 2010.

15. Belov, P. A. and C. R. Simovski, "On homogenization of electromagnetic crystals formed by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, 026615, 2005.
doi:10.1103/PhysRevE.72.026615

16. Silveirinha, M. G., "Generalized Lorentz-Lorenz formulas for microstructured materials," Phys. Rev. B, Vol. 76, 245117, 2007.
doi:10.1103/PhysRevB.76.245117

17. Bossavit, A., "Homogenization of split-ring arrays, seen as the exploitation of translational symmetry," Metamaterials and Plasmonics: Fundamentals, Modelling, Applications, 77-90, Springer Netherlands, 2008.

18. Holt, A. and G. Karlström, "Inclusion of the quadrupole moment when describing polarization. The effect of the dipole-quadrupole polarizability," J. Comput. Chem., Vol. 29, 2033-2038, 2008.
doi:10.1002/jcc.20976

19. Rayleigh, L., "On the influence of obstacles arranged in rectangular order upon the properties of the medium," Phil. Mag., Vol. 34, 481-502, 1892.

20. McPhedran, R. C. and D. R. McKenzie, "The conductivity of lattices of spheres I. The simple cubic lattice," Proc. R. Soc. Lond. A, Vol. 359, 45-63, 1978.
doi:10.1098/rspa.1978.0031

21. Qi, J., H. Kettunen, H. Wallén, and A. Sihvola, "Quasi-dynamic homogenization of geometrically simple dielectric composites," ACES Journal, Vol. 25, No. 12, 1036-1045, 2010.

22. Sjöberg, D., "Simple wave solutions for the Maxwell equations in bianisotropic nonlinear media, with application to oblique incidence," Wave Motion, Vol. 32, No. 3, 217-232, 2000.
doi:10.1016/S0165-2125(00)00039-1

23. Gustafsson, M., C. Sohl, C. Larsson, and D. Sjöberg, "Physical bounds on the all-spectrum transmission through periodic arrays," EPL Europhysics Letters, Vol. 87, No. 3, 34002, 2009.
doi:10.1209/0295-5075/87/34002

24. Sjöberg, D., M. Gustafsson, and C. Larsson, "Physical bounds on the all-spectrum transmission through periodic arrays: Oblique incidence," EPL Europhysics Letters, Vol. 92, 34009, 2010.
doi:10.1209/0295-5075/92/34009

25. Sjöberg, D., "Variational principles for the static electric and magnetic polarizabilities of anisotropic media with perfect electric conductor inclusions," J. Phys. A: Math. Theor., Vol. 42, 335403, 2009.
doi:10.1088/1751-8113/42/33/335403

26. Jones, D. S., "Scattering by inhomogeneous dielectric particles," Q. J. Mech. Appl. Math., Vol. 38, 135, 1985.
doi:10.1093/qjmam/38.1.135