Vol. 22
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-15
FDTD Study on Scattering for Conducting Target Coated with Magnetized Plasma of Time-Varying Parabolic Density Distribution
By
Progress In Electromagnetics Research M, Vol. 22, 13-25, 2012
Abstract
The trapezoidal recursive convolution (TRC) finite-difference time-domain (FDTD) method is extended to study the bistatic scattering radar cross sections (RCS) of conductive targets covered with inhomogeneous, time-varying, magnetized plasma medium. The two-dimensional TRC-FDTD formulations for electromagnetic scattering of magnetized plasma are derived. Time-varying parabolic density profiles of plasma are assumed in this paper. The bistatic radar cross sections are calculated under different conditions using 2-D TE model for a conductive cylinder covered with magnetized plasma. The numerical results show that plasma cloaking system can successfully reduce the bistatic RCS, that the plasma stealth is effective, and that the appropriate parameters of plasma can enhance its effectiveness.
Citation
Song Liu, and Shuangying Zhong, "FDTD Study on Scattering for Conducting Target Coated with Magnetized Plasma of Time-Varying Parabolic Density Distribution," Progress In Electromagnetics Research M, Vol. 22, 13-25, 2012.
doi:10.2528/PIERM11083109
References

1. Taflove, A. and C. H. Susan, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2005.

2. Schneider, J. and S. Hudson, "The finite-difference time-domain method applied to anisotropic material," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 7, 994-999, 1993.
doi:10.1109/8.237636

3. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739

4. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

5. Siushansian, R. and J. LoVetri, "A comparison of numerical techniques for modeling electromagnetic dispersive media," IEEE Microw. Guided Wave Lett., Vol. 5, No. 12, 426-428, 1995.
doi:10.1109/75.481849

6. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 11, 1739-1746, 1998.
doi:10.1109/8.736632

7. Liu, S. B., N. C. Yuan, and J. J. Mo, "Piecewise linear current density recursive convolution FDTD implementation for anisotropic magnetized plasmas," IEEE Microwave Wireless Components Letters, Vol. 14, No. 5, 222-224, 2004.
doi:10.1109/LMWC.2004.827844

8. Liu, S. and S. B. Liu, "Runge-kutta exponential time differencing FDTD method for anisotropic magnetized plasma," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 306-309, 2008.

9. Xu, L. J. and N. C. Yuan, "JEC-FDTD for 2-D conducting cylinder coated by anisotropic magnetized plasma," IEEE Microwave Wireless Components Letters, Vol. 15, No. 12, 892-894, 2005.
doi:10.1109/LMWC.2005.859970

10. Xu, L. J. and N. C. Yuan, "FDTD for formulations for scattering from 3-D anisotropic magnetized plasma objects," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 335-338, 2006.
doi:10.1109/LAWP.2006.878901

11. Yang, L. X., "3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method," International Journal of Infrared and Millimeter Waves, Vol. 28, 557-565, 2007.
doi:10.1007/s10762-007-9233-9

12. Liu, S. B., J. J. Mo, and N. C. Yuan, "FDTD simulation of electromagnetic reflection of conductive plane covered with inhomogeneous time-varying plasma," International Journal of Infrared and Millimeter Waves, Vol. 23, No. 8, 1179-1191, 2002.
doi:10.1023/A:1019659608668

13. Liu, S. B., J. J. Mo, and N. C. Yuan, "FDTD analysis of electromagnetic reflection of conductive plane covered with magnetized inhomogeneous plasmas," International Journal of Infrared and Millimeter Waves, Vol. 23, No. 12, 1803-1815, 2002.
doi:10.1023/A:1021418805523

14. Dai, S. Y., C. M. Zhang, and Z. S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid metho," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 16, 2187-2196, 2009.
doi:10.1163/156939309790109306

15. Lee, J. H. and D. K. Kalluri, "Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 47, No. 7, 1146-1151, 1999.
doi:10.1109/8.785745

16. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1171-1194, 2004.
doi:10.1163/1569393042955306

17. Wang, M. Y., J. Wu, J. Wu, Y. Yan, and H.-L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

18. Werner, G. R. and J. R. Cary, "Stable FDTD algorithm for non-diagonal, anisotropic dielectrics," Journal of Computational Physics, Vol. 226, 1085-1101, 2007.
doi:10.1016/j.jcp.2007.05.008

19. Lee, Y.-G., "Electric field discontinuity-considered effective-permittivities and integration-tensors for the three-dimensional finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
doi:10.2528/PIER11060304

20. Geng, Y. L., X. B. Wu, and L. W. Li, "Characterization of electromagnetic scattering by a plasma anisotropic spherical shell," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 100-103, 2004.
doi:10.1109/LAWP.2004.830018

21. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 1, 185-200, 1994.
doi:10.1006/jcph.1994.1159