Vol. 28
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-12-04
Ultrafast Autonomous Detection and Scanning System Based on Optoelectronic Pulse Switching
By
Progress In Electromagnetics Research Letters, Vol. 28, 63-72, 2012
Abstract
A novel method allowing the ultrafast scanning of an area thanks to an Ultra Wide Band (UWB) antenna array is proposed in this paper. This method is based on the use of asynchronous optical pulses trains with different repetition rates obtained in amplified regenerative cavities. By means of optoelectronic switching, providing short powerful electrical pulses trains to an UWB antenna array, it is possible to spatially scan a large area in less than 1 ms. The paper presents the principle of the transient beam steering and its potentialities to realize an ultrafast detection system.
Citation
Laurent Desrumaux, Vincent Couderc, Michele Lalande, Joel Andrieu, Valerie Bertrand, and Bernard Jecko, "Ultrafast Autonomous Detection and Scanning System Based on Optoelectronic Pulse Switching," Progress In Electromagnetics Research Letters, Vol. 28, 63-72, 2012.
doi:10.2528/PIERL11083103
References

1. Godard, A., L. Desrumaux, V. Bertrand, J. Andrieu, M. Lalande, B. Jecko, M. Brishoual, V. Couderc, and R. Guillerey, "A transient UWB array used with complex impedance surfaces," International Journal of Antennas and Propagation, Vol. 2010, 8, Article ID 243145, 2010.

2. Lalande, M., J.-C. Diot, S. Vauchamp, J. Andrieu, V. Bertrand, B. Beillard, B. Vergne, V. Couderc, A. Barthelemy, D. Gontier, and R. Guillerey, "An ultra wideband impulse optoelectronic radar: RUGBI," Progress In Electromagnetics Research B, Vol. 11, 205-222, 2009.
doi:10.2528/PIERB08120306

3. Vergne, B., V. Couderc, A. Barthelemy, M. Lalande, V. Bertrand, and D. Gontier, "High power ultra-wideband electrical pulse generation by using doped silicon photoconductive switch," Microwave and Optical Technology Letters, Vol. 48, 121-125, 2006.
doi:10.1002/mop.21282

4. Vergne , B., V. Couderc, A. Barthelemy, D. Gontier, M. Lalande, and V. Bertrand, "Voltage rectifier diodes used as photoconductive device for microwave pulse generation," IEEE Transactions on Plasma Science, Special Issue on Pulsed-power Science and Technology, Vol. 34, 1806-1813, 2006.

5. Immoreev, I. I. and J. D. Taylor, "Optimal short pulse ultra-wideband radar signal detection," Ultra-Wideband Short-Pulse Electromagnetics 5, P. D. Smith and S. R. Cloude (eds.), 207-214, Kluwer Academic/Plenium Publishers, 2002.

6. Ressler , M. A., "The army research laboratory ultra wideband BoomSAR," Geoscience and Remote Sensing Symposium, Vol. 3, 1886-1888, 1996.

7. Efremov, A. M., V. I. Koshelev, B. M. Kovalchuk, V. V. Plisko, and K. N. Sukchushin, "High-power sources of ultrawideband radiation with subnanosecond pulse length," 14th International Symposium on High Currents Electronics, Tomsk, Russia, Sep. 2006.

8. Salo, , G. R. and J. S. Gwynne, "UWB antenna characterization and optimization methodologies," Ultra-Wideband Short-Pulse Electromagnetics 6, E. L. Mokole et al. (eds.), 329-336, Kluwer Academic/Plenium Publishers, 2003.

9. Desrumaux, L., A. Godard, M. Lalande, V. Bertrand, J. Andrieu, B. Jecko, "An original antenna for transient high power UWB arrays: The Shark antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2010.
doi:10.1109/TAP.2010.2050418

10. Desrumaux, L., M. Lalande, J. Andrieu, V. Bertrand, and B. Jecko, "The Shark antenna: A miniature antenna for transient ultra wide band applications in the frequency band [800 MHz-8 GHz]," European Conference on Antennas and Propagation 2010, Barcelona, Apr. 12-16, 2010.

11. Gripshover, R. J. and L. F. Rinehart, "Frozen wave generator,", US patent 4.491.842, 1981.

12. Lee, C. H., "Optical control of semiconductor closing and opening switches," IEEE Transactions on Electron. Devices, Vol. 37, 2426-2438, 1990.
doi:10.1109/16.64515

13. Vergne , B., V. Couderc, and P. Levµeque, "30 kHz monocycle generator using linear photoconductive switches and microchip laser," Photonics Technology Letters, Vol. 20, No. 24, 2132-2134, 2008.
doi:10.1109/LPT.2008.2007132

14. Nunnaly, W. C., "High-power microwave generation using activated semiconductor switches," IEEE Transactions on Electron. Devices, Vol. 37, No. 12, 2439-2448, 1990.
doi:10.1109/16.64516

15. Kringlebotn, J. T., P. R. Morkel, C. N. Pannell, D. N. Payne, and R. I. Laming, "Amplified fibre delay line with 27000 recirculations," Electro. Lett., Vol. 28, No. 2, 201-202, 1992.
doi:10.1049/el:19920125

16. Jolly, A., J. F. Gleyze, P. Di Bin, and V. Kermµene, "Demonstration of a true single-shot 100 GHz bandwidth optical oscilloscope at 1053-1064 nm," Opt. Express, Vol. 17, No. 14, 2009.
doi:10.1364/OE.17.012109

17. Jolly, A., J. F. Gleyze, and J. C. Jolly, "Static and synchronized switching noise management of replicated optical pulse trains," Optics Communications, Vol. 264, 89-96, 2006.
doi:10.1016/j.optcom.2006.01.057

18. Desrumaux, L., M. Lalande, J. Andrieu, V. Bertrand, and B. Jecko, "An innovative radar imaging system based on the capability of an UWB array to steer successively in different directions," Progress In Electromagnetics Research B, Vol. 32, 91-106, 2011.
doi:10.2528/PIERB11053003