Vol. 26
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-09-25
Spherical Indoor Facility Applied to Bistatic Radar Cross Section Measurements
By
Progress In Electromagnetics Research Letters, Vol. 26, 181-187, 2011
Abstract
A new indoor facility for electromagnetic tests is presented and used here for the specific case of bistatic radar cross section (RCS) measurements. A metallic cube is selected as test case and the results are compared with the predictions obtained with different numerical methods. Good agreement is reported.
Citation
David Escot-Bocanegra, David Poyatos-Martınez, Ignacio Montiel-Sanchez, Francisco Manuel Adana Herrero, and Ivan Gonzalez-Diego, "Spherical Indoor Facility Applied to Bistatic Radar Cross Section Measurements," Progress In Electromagnetics Research Letters, Vol. 26, 181-187, 2011.
doi:10.2528/PIERL11082211
References

1. Brown, J., K. Woodbridge, A. Stove, and S. Watts, "Air target detection using airborne passive bistatic radar," Electronics Letters, Vol. 46, No. 20, 1396-1397, 2010.
doi:10.1049/el.2010.1732

2. Paterson , J., "Overview of low observable technology and its effects on combat aircraft survivability," Journal of Aircraft, Vol. 36, No. 2, 380-388, 1999.
doi:10.2514/2.2468

3. Chung, B. K., H. T. Chuah, and J. W. Bredow, "A microwave anechoic chamber for radar-cross section measurement," IEEE Antennas and Propagation Magazine, Vol. 39, No. 3, 21-26, 1997.
doi:10.1109/74.598557

4. Lane, T. L., N. T. Alexander, and C. A. Blevins, "The bistatic coherent measurement system (BICOMS)," The Record of the IEEE Radar Conference, 154-159, 1999.

5. Chevalier , Y., P. Minvielle, F. Degery, and P. Brisset, "Indoor spherical 3D RCS near-field facility," Annual Meeting of the Antenna Measurement Techniques Association, AMTA, 2007.

6. Leou, J. L. and H. J. Li, "Evaluation of bistatic far-field quantities from near-field measurements," Progress In Electromagnetics Research, Vol. 25, 167-188, 2000.
doi:10.2528/PIER99060507

7. Li , N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.
doi:10.2528/PIERB08080706

8. Poyatos-Martinez, D., D. Escot-Bocanegra, E. de Diego-Custodio, I. Gonzalez-Diego, F. Saez de Adana, and I. Montiel-Sanchez, "Application of a spherical multi-purpose facility to the selection of the appropriate radome for an on-board pod antenna," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1243-1252, 2011.
doi:10.1163/156939311795762196

9. Escot, D., D. Poyatos, J. A. Aguilar, I. Montiel, I. Gonzalez, and F. Saez de Adana, "Indoor 3D full polarimetric bistatic spherical facility for electromagnetic tests," IEEE Antennas and Propagation Magazine, Vol. 52, No. 4, 112-118, 2010.
doi:10.1109/MAP.2010.5638248

10. Trouve, N., E. Colin-Koeniguer, P. Fargette, and A. De Martino, "Influence of geometrical configurations and polarization basis de¯nitions on the analysis of bistatic polarimetric measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2238-2250, 2011.
doi:10.1109/TGRS.2010.2093533

11. Penno, R. P., G. A. Thiele, and K. M. Pasala, "Scattering from a perfectly conducting cube," Proceedings of the IEEE, Vol. 77, No. 5, 815-823, 1989.
doi:10.1109/5.32072