Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-11-02
Time-Domain Integral Equation Solver for Radiation from Dipole Antenna Loaded with General BI-Isotropic Objects
By
Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011
Abstract
Electromagnetic radiation by dipole antenna loaded with general bi-isotropic objects is investigated using time-domain integral equations. By introducing pairs of equivalent electric and magnetic sources, electromagnetic fields inside a homogeneous bi-isotropic region can be represented by these sources over its boundary. A series of coupled surface integral equations are obtained after imposing boundary conditions. These equations are solved numerically by the Galerkin's method that involves separate spatial and temporal testing procedures. The scaled Laguerre functions are used as the temporal basis and testing functions. The use of the Laguerre functions completely removes the time variable from computation, and the results are stable even at late times. Numerical results are presented and compared with analytical results, and similarities and differences are observed.
Citation
Hui Zhu, Ze-Hai Wu, Xiu Zhang, and Bin-Jie Hu, "Time-Domain Integral Equation Solver for Radiation from Dipole Antenna Loaded with General BI-Isotropic Objects," Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011.
doi:10.2528/PIERB11081907
References

1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

2. Lindman, K. F., "Ober eine durch ein isotropes system von spiralformigen resonatoren erzeugte rotationspolarisation der elektromagnetischen wellen," Ann. Phys., Vol. 63, 621-644, 1920.
doi:10.1002/andp.19203682303

3. Tellegen, B. D. H., "The gyrator: A new electric network element," Phillips Res. Rep., Vol. 3, 81, 1948.

4. Varadan, V. V., R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8--40 GHz range," Radio Sci., Vol. 29, No. 1, 9-22, 1994.
doi:10.1029/93RS00551

5. Bahr, A. J. and K. R. Clausing, "An approximate model for artificial chiral material," IEEE Trans. on Antennas and Propogat., Vol. 42, No. 12, 1592-1599, Dec. 1994.
doi:10.1109/8.362815

6. Tretyakov, S. A., S. I. Maslovski, I. S. Nefedov, A. J. Viitanen, P. A. Belov, and A. Sanmartin, "Artificial Tellegen particle," Electromagn., Vol. 23, No. 8, 665-680, 2003.
doi:10.1080/02726340390244789

7. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electron. Lett., Vol. 29, 1048-1049, Jun. 1993.
doi:10.1049/el:19930699

8. Engheta, N. and P. Pelet, "Reduction of surface waves in chirostrip antennas," Electron. Lett., Vol. 27, 5-7, Jan. 1991.
doi:10.1049/el:19910004

9. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. on Antennas and Propogat., Vol. 38, 90-98, Jan. 1990.
doi:10.1109/8.43593

10. Lindell, I. V., S. A. Tretyakov, and M. I. Oksanen, "Conductor-backed Tellegen slab as twist polarizer," Electron. Lett., Vol. 28, 281-282, 1992.
doi:10.1049/el:19920173

11. Monzon, J. C., "Radiation and scattering in homogeneous general biisotropic regions," IEEE Trans. on Antennas and Propogat., Vol. 38, No. 2, 227-235, Feb. 1990.
doi:10.1109/8.45125

12. Monzon, J. C., "Scattering by a biisotropic body," IEEE Trans. on Antennas and Propogat., Vol. 43, No. 11, 1288-1296, Nov. 1995.

13. Kluskens, M. S. and E. H. Newman, "Scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. on Antennas and Propogat., Vol. 38, No. 9, 1448-1455, Sep. 1990.
doi:10.1109/8.56998

14. Jaggard, D. L. and J. C. Liu, "The matrix Riccati equation for scattering from stratified chiral spheres," IEEE Trans. on Antennas and Propogat., Vol. 47, No. 7, 1201-1207, Jul. 1999.
doi:10.1109/8.785752

15. Wang, D. X., E. K. N. Yung, R. S. Chen, and P. Y. Lau, "Scattering characteristics of general bi-isotropic objects using surface integral equations," Radio Sci., Vol. 41, No. 2, Apr. 2006.
doi:10.1029/2005RS003315

16. Engheta, N. and M. W. Kowarz, "Antenna radiation in the presence of a chiral sphere," J. Appl. Phys., Vol. 67, No. 2, 639-647, Jan. 1990.
doi:10.1063/1.345766

17. Rao, S. M., Time Domain Electromagnetic, Academic, 1999.

18. Ryne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field integral equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, 1990.
doi:10.1163/156939390X00762

19. Davies, P. J., "On the stability of time-marching schemes for the general surface electric-field integral equation," IEEE Trans. on Antennas and Propagat., Vol. 44, 1467-1473, Nov. 1996.

20. Jung, B. H., T. K. Sarkar, Y. S. Chung, and Z. Ji, "An accurate and stable implicit solution for transient scattering and radiation from wire structures," Microwave Opt. Technol. Lett., Vol. 34, No. 5, 354-359, Sep. 2002.
doi:10.1002/mop.10461

21. Jung, B. H., T. K. Sarkar, Y. S. Chung, S. P. Magdalena, Z. Ji, S. Jang, and K. Kim, "Transient electromagnetic scattering from dielectric objects using the electric field integral equation with laguerre polynomials as temporal basis functions," IEEE Trans. on Antennas and Propogat., Vol. 52, No. 9, 2329-2339, Sep. 2004.
doi:10.1109/TAP.2004.834062

22. Jung, B. H., M. T. Yuan, T. K. Sarkar, et al. "Solving the time-domain magnetic field integral equation for dielectric bodies without the time variable through the use of entire domain Laguerre polynomials," Electromagn., Vol. 24, No. 6, 385-408, Sep. 2004.
doi:10.1080/02726340490467439

23. Jung, B.-H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502

24. Wu, Z. H., Time domain integral equations for scattering and radiation by three-dimensional homogeneous bi-isotropic objects with arbitrary shape, Ph.D. Dissertation, City University of Hong Kong, Hong Kong, Jul. 2010.

25. Harrington, R. F., Field Computation by Moment Methods, New York, 1968.

26. Rao, S. M., Electromagnetic scattering and radiation of arbitrarily shaped surfaces by triangular patch modeling, PhD. Dissertation, University of Mississippi, Aug. 1980.

27. Sihvola, A. H. and I. V. Lindell, "Bi-isotropic constitutive relations," Microwave Opt. Technol. Lett., Vol. 4, No. 8, 295-297, Jul. 1991.
doi:10.1002/mop.4650040805

28. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic, 1980.

29. http://www.feko.info/.

30. Wang, D. X., E. K. N. Yung, and R. S. Chen, "A new method for analyzing the electromagnetic characteristics of a body of complex medium," Asia Pacific Microwave Conference, Hong Kong, Dec. 2008.

31. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. on Antennas and Propogat., Vol. 53, No. 10, 3374-3384, Oct. 2005.
doi:10.1109/TAP.2005.856328

32. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Trans. on Antennas and Propogat., Vol. 52, No. 2, 416-425, Feb. 2004.
doi:10.1109/TAP.2004.823956