Vol. 120
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-22
Design and Optimization of Spherical Lens Antennas Including Practical Feed Models
By
Progress In Electromagnetics Research, Vol. 120, 355-370, 2011
Abstract
A novel approach for the design and optimization of spherical lens antennas (SLAs) including practical feed model (PFM) is proposed. The vector spherical wave function expansions (VSWE) combined with differential evolution (DE) algorithm is adopted for the optimal design of SLAs. Moreover, the near-field aperture distributions of a Ku band dielectric loaded horn feed and a Ka band corrugated horn feed were obtained using the full wave simulation and were then taken into account in the DE optimization. The performances of the optimized 2-layer design are compared with previous works, higher directivity is obtained. Additionally, the radiation characteristics of an optimized SLA are presented, and numerical results of a 650 mm diameter 2-layer hemispherical lens antenna (HLA) with ground plane are compared to the experimental results, and good agreements are obtained. An investigation of the influence of the various lens-to-feed distances as well as aperture sizes of SLA on the aperture efficiency for a 2-layer design is also proposed.
Citation
Ming Huang, Shiwen Yang, Wei Xiong, and Zai-Ping Nie, "Design and Optimization of Spherical Lens Antennas Including Practical Feed Models," Progress In Electromagnetics Research, Vol. 120, 355-370, 2011.
doi:10.2528/PIER11081404
References

1. Liang, C. S., D. A. Streater, J.-M. Jin, E. Dunn, and T. Rozendal, "A quantitative study of luneberg-lens reflectors," IEEE Antennas Propag. Mag., Vol. 47, No. 2, 30-41, 2005.
doi:10.1109/MAP.2005.1487776

2. Vinogradov, S. S., P. D. Smith, J. S. Kot, and N. Nikolic, "Radar cross-section studies of spherical lens reflectors," Progress In Electromagnetics Research, Vol. 72, 325-337, 2007.
doi:10.2528/PIER07031206

3. Nikolic, N., J. S. Kot, and S. Vinogradov, "Scattering by a Luneberg lens partially covered by a metallic cap," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 549-563, 2007.
doi:10.1163/156939307780616856

4. Schrank, H. and J. Sanford, "A Luneberg-lens update," IEEE Antennas Propag. Mag., Vol. 37, No. 1, 76-79, Feb. 1995.
doi:10.1109/74.370587

5. Schoenlinner, B., X. Wu, J. P. Ebling, G. V. Eleftheriades, and G. M. Rebeiz, "Wide-scan spherical-lens antennas for automotive radars," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 9, 2166-2175, Sep. 2002.
doi:10.1109/TMTT.2002.802331

6. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.
doi:10.2528/PIER98021300

7. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi- optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404

8. Sun, F. and S. He, "Can Maxwell's fish eye lens really give perfect imaging?," Progress In Electromagnetics Research, Vol. 108, 307-322, 2010.
doi:10.2528/PIER10091003

9. Sun, F., X. Ge, and S. He, "Can Maxwell's fish eye lens really give perfect imaging? Part II. The case with passive drains," Progress In Electromagnetics Research, Vol. 110, 313-328, 2010.
doi:10.2528/PIER10110313

10. Zhong, M., S. Yang, and Z. Nie, "Optimization of a Luneberg lens antenna using the differential evolution algorithm," Proc. IEEE AP-S Int. Symp. Dig., San Diego, CA, Jul. 2008.

11. Stratton, J. A., Electromagnetic Theory, 204-207, McGraw Hill, 1941.

12. Tai, C. T., "The electromagnetic theory of the spherical Luneberg lens," Appl. Sci. Res., Vol. 7, 113-130, Section B, 1958.

13. Sanford, J. R., "Scattering by spherically stratified microwave lens antennas," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 690-698, May 1994.
doi:10.1109/8.299568

14. Mosallaei, H. and Y. Rahmat-Samii, "Non-uniform Luneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 60-69, Jan. 2001.
doi:10.1109/8.910531

15. Thornton, J., "Wide-scanning multi-layer hemisphere lens antenna for Ka band," IEE Proc.-Microw. Antennas Propag., Vol. 153, No. 6, 573-578, 2006.
doi:10.1049/ip-map:20050220

16. Fuchs, B., R. Golubovic, A. K. Skrivervik, and J. R. Mosig, "Spherical lens antenna designs with particle swarm optimization," Microw. Opt. Techn. Lett., Vol. 52, No. 7, 1655-1659, Jul. 2010.
doi:10.1002/mop.25278

17. Fuchs, B., S. Palud, L. Le Coq, O. Lafond, M. Himdi, and S. Rondineau, "Scattering of spherically and hemispherically stratified Lenses fed by any real source," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 450-460, Feb. 2008.
doi:10.1109/TAP.2007.915458

18. Peeler, G. D. M. and H. P. Coleman, "Microwave stepped-index Luneberg lenses," IEEE Trans. Antennas Propag., Vol. 6, No. 2, 202-207, 1958.
doi:10.1109/TAP.1958.1144575

19. Carpenter, Michael, P., et al. Lens of gradient dielectric constant and methods of production, U. S. Patent 6-433-936 B1, 2001.

20. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Lüneburg lens," IEEE Antennas Wireless Propag. Lett., Vol. 2, 163-166, 2003.
doi:10.1109/LAWP.2003.819045

21. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett., Vol. 95, 094107, 2009.
doi:10.1063/1.3223608

22. Ma, H. F., X. Chen, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials," J. Appl. Phys., Vol. 107, 014902, 2010.
doi:10.1063/1.3275505

23. Wang, G., Y. Gong, and H. Wang, "On the size of left-handed material lens for near-field target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008.
doi:10.2528/PIER08101902

24. Andrés-García, B., L. E. García-Muñoz, V. Gonzalez-Posadas, F. J. Herraiz-Martínez, and D. Segovia-Vargas, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105

25. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

26. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous Ant Colony Optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901

27. Storn, R. and M. Siemens AG, "On the usage of differential evolution for function optimization," Biennial Conference of the North American, 519-523, 1996.

28. Qing, A., "Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy," IEEE Trans. Antennas Propag., Vol. 51, 1251-1262, 2003.
doi:10.1109/TAP.2003.811492

29. Yang , S., Y. B. Gan, and A. Qing, "Antenna-array pattern nulling using a differential evolution algorithm," Int. J. RF Microwave Comput. Aided Eng., Vol. 14, No. 1, 57-63, 2004.
doi:10.1002/mmce.10118

30. Li, J.-Y. and J. L. Guo, "Optimization technique using differential evolution for Yagi-Uda antennas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 449-461, 2009.
doi:10.1163/156939309787612356

31. Li, G., S. Yang, M. Huang, and Z. Nie, "Sidelobe suppression in time modulated linear arrays with unequal element spacing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 775-783, 2010.
doi:10.1163/156939310791036368