Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-04
Comparison of Radar and Thermoacoustic Technique in Microwave Breast Imaging
By
Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011
Abstract
Microwave radar and microwave-induced thermoacoustic technique exploit the contrast in the permittivity and conductivity between malignant and healthy tissue. They have emerged as promising techniques for detecting breast cancers. This paper compares the imaging capability of these techniques in the presence of homogeneous and heterogeneous breast tissue. Relying on the data from the finite-difference time-domain simulations, the study shows that both techniques are capable of imaging homogeneous objects. In the presence of electromagnetic dispersion and heterogeneity, radar signals suffer from strong dispersion and multiple scattering, which decorrelate the signals with the scatterers. The microwave-induced thermoacoustic technique takes the advantage of breast being acoustically homogeneous and is capable of generating high-quality images.
Citation
G. Kevin Zhu, and Milica Popović, "Comparison of Radar and Thermoacoustic Technique in Microwave Breast Imaging," Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011.
doi:10.2528/PIERB11080204
References

1. Poplack, S. P., K. Paulsen, A. Hartov, P. Meaney, B. Pogue, T. Tosteson, M. Grove, S. Soho, and W. Wells, "Electromagnetic breast imaging: Average tissue property values in women with negative clinical findings," Radiology, Vol. 231, 571-580, 2004.
doi:10.1148/radiol.2312030606

2. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, S. C. Hagness, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, No. 10, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

3. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

4. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, Jr., K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Physiological Measurement, Vol. 30, No. 6, S121-S136, Jun. 2009.
doi:10.1088/0967-3334/30/6/S08

5. Li, X., E. J. Bond, B. D. van Veen, and S. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217

6. Wang, L., "Prospect of photoacoustic tomography," Medical Physics, Vol. 35, 5758-5767, 2008.
doi:10.1118/1.3013698

7. Tang, M.-X., D. S. Elson, R. Li, C. Dunsby, and R. J. Eckersley, "Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging," Journal of Engineering in Medicine, Vol. 224, No. 2, 291-306, 2010.
doi:10.1243/09544119JEIM598

8. Diebold, G. J., "Photoacoustic monopole radiation: Waves from objects with symmetry in one, two, and three dimensions," Photoacoustic Imaging and Spectroscopy, No. 1, 3-18, L. V. Wang, Ed., Taylor & Francis Group, Boca Raton, FL, 2009.

9. Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th Ed., John Wiley & Sons, Inc., 2000.

10. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modelling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130

11. Duck, F. A., Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, 1990.

12. Robinson, M. P., M. J. Richardson, J. L. Green, and A. W. Preece, "New materials for dielectric simulation of tissues," Physical and Medical Biology, Vol. 36, No. 12, 1565-1571, 1991.
doi:10.1088/0031-9155/36/12/002

13. Converse, M., E. J. Bond, B. D. van Veen, and S. C. Hagness, "A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2169-2180, 2006.
doi:10.1109/TMTT.2006.872790

14. Mast, T. D., "Empirical relationships between acoustic parameters in human soft tissues," Acoustics Research Letters Online, Vol. 37, No. 1, 37-43, 2000.
doi:10.1121/1.1336896

15. Prince, J. L. and J. M. Links, Medical Imaging Signals and Systems, Prentice Hall, Inc., 2006.

16. Werner, J. and M. Buse, "Temperature profiles with respect to inhomogeneity and geometry of the human body," Journal of Applied Physiology, Vol. 63, No. 3, 1110-1118, 1988.

17. Erdmann, B., J. Lang, and M. Seebass, "Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model," Annals of the New York Academy of Sciences, Vol. 858, 36-46, 1998.
doi:10.1111/j.1749-6632.1998.tb10138.x

18. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave induced thermal acoustic imaging for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 54, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108

19. Johnson, D. H. and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice Hall, Inc., 1993.

20. Fear, E. C., X. Li, S. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumours in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

21. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "Perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., Vol. 43, 12, 1995.