1. Poplack, S. P., K. Paulsen, A. Hartov, P. Meaney, B. Pogue, T. Tosteson, M. Grove, S. Soho, and W. Wells, "Electromagnetic breast imaging: Average tissue property values in women with negative clinical findings," Radiology, Vol. 231, 571-580, 2004.
doi:10.1148/radiol.2312030606
2. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, S. C. Hagness, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, No. 10, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001
3. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002
4. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth, Jr., K. M. Rosenkranz, W. A. Wells, C. A. Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Physiological Measurement, Vol. 30, No. 6, S121-S136, Jun. 2009.
doi:10.1088/0967-3334/30/6/S08
5. Li, X., E. J. Bond, B. D. van Veen, and S. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217
6. Wang, L., "Prospect of photoacoustic tomography," Medical Physics, Vol. 35, 5758-5767, 2008.
doi:10.1118/1.3013698
7. Tang, M.-X., D. S. Elson, R. Li, C. Dunsby, and R. J. Eckersley, "Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging," Journal of Engineering in Medicine, Vol. 224, No. 2, 291-306, 2010.
doi:10.1243/09544119JEIM598
8. Diebold, G. J., "Photoacoustic monopole radiation: Waves from objects with symmetry in one, two, and three dimensions," Photoacoustic Imaging and Spectroscopy, No. 1, 3-18, L. V. Wang, Ed., Taylor & Francis Group, Boca Raton, FL, 2009.
9. Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th Ed., John Wiley & Sons, Inc., 2000.
10. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modelling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130
11. Duck, F. A., Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, 1990.
12. Robinson, M. P., M. J. Richardson, J. L. Green, and A. W. Preece, "New materials for dielectric simulation of tissues," Physical and Medical Biology, Vol. 36, No. 12, 1565-1571, 1991.
doi:10.1088/0031-9155/36/12/002
13. Converse, M., E. J. Bond, B. D. van Veen, and S. C. Hagness, "A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2169-2180, 2006.
doi:10.1109/TMTT.2006.872790
14. Mast, T. D., "Empirical relationships between acoustic parameters in human soft tissues," Acoustics Research Letters Online, Vol. 37, No. 1, 37-43, 2000.
doi:10.1121/1.1336896
15. Prince, J. L. and J. M. Links, Medical Imaging Signals and Systems, Prentice Hall, Inc., 2006.
16. Werner, J. and M. Buse, "Temperature profiles with respect to inhomogeneity and geometry of the human body," Journal of Applied Physiology, Vol. 63, No. 3, 1110-1118, 1988.
17. Erdmann, B., J. Lang, and M. Seebass, "Optimization of temperature distributions for regional hyperthermia based on a nonlinear heat transfer model," Annals of the New York Academy of Sciences, Vol. 858, 36-46, 1998.
doi:10.1111/j.1749-6632.1998.tb10138.x
18. Guo, B., J. Li, H. Zmuda, and M. Sheplak, "Multifrequency microwave induced thermal acoustic imaging for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 54, 2000-2010, 2007.
doi:10.1109/TBME.2007.895108
19. Johnson, D. H. and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice Hall, Inc., 1993.
20. Fear, E. C., X. Li, S. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumours in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759
21. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "Perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., Vol. 43, 12, 1995.