Vol. 21
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-22
EM Transmission Response of Microstrip Notch Filter on Obliquely Magnetized Magneto-Dielectric Substrate in Xband Under Influence of Low Magnitude of External DC Magnetic Field
By
Progress In Electromagnetics Research M, Vol. 21, 47-59, 2011
Abstract
A tunable microwave notch filter is developed on magneto-dielectric material having low saturation magnetization to attain low external dc magnetic field for biasing. A simple microstrip line at 10 GHz is developed on nickel ferrite/low density polyethylene nanocomposite system as substrates and its microwave transmission response is studied in X-band. Composite system is developed by dispersing nano sized nickel ferrite (~6.63 nm) in low density polyethylene to obtain a homogeneous flexible substrate. Saturation magnetization of 4% volume fraction of the composite is found to be 1.8745 emu/g. Tunability of Q value and insertion loss is studied with magnitude of external dc magnetic field and at different angles of its orientation with the axial plane. A very low field up to 250 G is sufficient to tune the selectivity. An insertion loss of ~-30 dB and Q ~ 375 at 10.2 GHz is observed. The interaction of magneto static modes with orientation of the applied dc magnetic bias with respect to rf magnetic field is discussed with couple mode theory. Good cut-off behaviour of more than 28 dB is observed at magnetic field angles from 23.52° to 34.21°. The experimental and theoretical couplings show close proximity.
Citation
Subasit Borah, and Nidhi Saxena Bhattacharyya, "EM Transmission Response of Microstrip Notch Filter on Obliquely Magnetized Magneto-Dielectric Substrate in Xband Under Influence of Low Magnitude of External DC Magnetic Field," Progress In Electromagnetics Research M, Vol. 21, 47-59, 2011.
doi:10.2528/PIERM11080110
References

1. Miranda, F. A., G. Subramanyam, F. W. Van Keuls, R. R. Romanofsky, J. D. Warner, and C. H. Muller, "Design and development of ferroelectric tunable microwave components for Ku-and K-band satellite communication systems," IEEE Trans. on Microwave Theory and Tech., Vol. 48, No. 7, 1181-1189, Jul. 2000.
doi:10.1109/22.853458

2. Dionne, G. F. and D. E. Oates, "Tunability of microstrip finite resonator in the partially magnetized state," IEEE Trans. on Magn., Vol. 33, 3421-3423, Sept. 1997.
doi:10.1109/20.617964

3. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507

4. Hsiao, P. Y. and R. M. Weng, "Compact open-loop UWB filter with notched band," Progress In Electromagnetics Research Letters, Vol. 7, 149-159, 2009.
doi:10.2528/PIERL09022501

5. Huang, J. Q., Q. X. Chu, and C. Y. Liu, "Compact UWB filter based on surface-coupled structure with dual notched bands," Progress In Electromagnetics Research, Vol. 106, 311-319, 2010.
doi:10.2528/PIER10062203

6. Huynen, I., B. Stockbroeckx, and G. Verstraeten, "An effcient energetic variational principle for modeling one-port lossy gyrotropic YIG Straight Edge Resonators," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 7, 932-939, Jul. 1998.
doi:10.1109/22.701445

7. Leon, G., R. R. Boix, and F. Medina, "Effcient full-wave characterization of microstrip lines fabricated on magnetized ferrites with arbitrarily oriented bias field," Journal Electromagnetic Waves and Applications, Vol. 15, No. 2, 223-251, 2001.
doi:10.1163/156939301X01372

8. Morales, C., J. Dewdney, S. Pal, S. Skidmore, K. Stojak, H. Srikanth, T. Weller, and J. Wang, "Tunable magneto-dielectric polymer nanocomposites for microwave applications," IEEE Trans. on Microwave Theory and Tech., Vol. 59, No. 2, 302-310, Feb. 2011.
doi:10.1109/TMTT.2010.2092788

9. Gao, B., L. Qiao, J. Wang, Q. Liu, F. Li, J. Feng, and D. Xue, "Microwave absorption properties of the Ni nanowires composite," J. Phys. D: Appl. Phys., Vol. 41, No. 235005, 1-5, Nov. 2008..

10. Yariv, A., "Coupled-mode theory for guided-wave optics," IEEE J. of Quantum Electronics, Vol. 9, No. 9, 919-933, Sept. 1973.
doi:10.1109/JQE.1973.1077767

11. Borah, S. and N. S. Bhattacharyya, "GCPWG technique for measurement of dielectric properties of magneto-polymer composite at microwave frequencies," Proc. IEEE, D.O.I. 10.1109/AEMC.2009.5430594, 2010.

12. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates - Part I: Design theory," IEEE Trans. on Microwave Theory and Tech., Vol. 20, No. 5, 304-308, May 1972.
doi:10.1109/TMTT.1972.1127749

13. Kaneki, T., "Analysis of linear microstrip using an arbitrary ferromagnetic substance as the substrate," Electronics Lett., Vol. 5, No. 19, 463, Sept. 1969.

14. Collins, R. E., Field Theory of Guided Waves, McGraw Hill, 152, 1960.

15. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates - Part II: Experiment," IEEE Trans. on Microwave Theory and Tech., Vol. 20, 309-313, May 1972.

16. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheet," IEEE Trans. on Microwave Theory and Tech., Vol. 13, 172-185, 1965.
doi:10.1109/TMTT.1965.1125962

17. Hammerstad, E. and Φ. Jensen, "Accurate models for microstrip computer-aided design," Symposium on Microwave Theory and Tech., 407-409, Jun. 1980.

18. Edwards, T. C. and R. P. Owens, "2-18-GHz dispersion measurements on 10-100­ Ω microstrip lines on sapphire," IEEE Trans. on Microwave Theory and Tech., Vol. 24, No. 8, 506-513, Aug. 1976.
doi:10.1109/TMTT.1976.1128888

19. Schneider, M. V., "Microstrip lines for microwave integrated circuits," The Bell System Technical Journal, Vol. 48, 1421-1444, May. 1969.

20. Pramanick, P. and P. Bhartia, "An accurate description of dispersion in microstrip," Microwave Journal, 89-96, Dec. 1983.

21. Borah, S. and N. S. Bhattacharyya, "Broadband measurement of complex permittivity of composite at microwave frequencies using scalar scattering parameters," Progress In Electromagnetics Research M, Vol. 13, 53-68, 2010.
doi:10.2528/PIERM10051203

22. Laverghetta, T. S., Microwave Materials and Fabrication Techniques, 3rd edition, Artech House, 2002.

23. Salahun, E., G. Tanne, and P. Queffelec, "Enhancement of design parameters for tunable ferromagnetic composite-based microwave devices: application to filtering devices," IEEE Trans. Microw. Theory Tech.: Microwave Symposium Digest, Vol. 3, No. 6-11, 1911-1914, Jun. 2004.

24. Deka, J. R., N. S. Bhattacharyya, and S. Bhattacharyya, "Development of low cost automated PC-based insertion loss measurement setup using a simple source and detector in X-band," IETE Tech. Rev., Vol. 22, 425, 2005.

25. Jacobs, I. S. and C. P. Bean, "An approach to elongated fine-particle magnets," Phys. Rev., Vol. 100, No. 4, 1060-1067, 1955.
doi:10.1103/PhysRev.100.1060

26. Morrish, A. H. and K. Haneda, "Magnetic structure of small NiFe2O4particles," J. Appl. Phys., Vol. 52, No. 3, 2496-2498, 1981.
doi:10.1063/1.328979

27. Nathani, H., S. Gubbala, and R. D. K. Misra, "Magnetic behavior of nickel ferrite-polyethylene nanocomposites synthesized by mechanical milling process," Materials Science and Engineering B, Vol. 111, 95-100, 2004.
doi:10.1016/j.mseb.2004.03.002

28. Lax, B., "Frequency and loss characteristics of microwave ferrite devices," Proc. IRE, Vol. 44, 1368-1386, Oct. 1956.

29. Gerson, I. J. and J. S. Nandan, "Surface electromagnetic modes of a ferrite slab," IEEE Trans. on Microwave Theory and Tech., Vol. 22, No. 8, 757-763, Aug. 1974.
doi:10.1109/TMTT.1974.1128332

30. Tsutsumi, M. and S. Tamura, "Microstrip line filters using yttrium iron garnet film," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 2, 400-402, Feb. 1992.
doi:10.1109/22.120114

31. Ishak, W. and K. W. Chang, "Tunable microwave resonators using magnetostatic wave in YIG films," IEEE Trans. on Microwave Theory and Tech., Vol. 34, No. 12, 1383-1393, Dec. 1986.
doi:10.1109/TMTT.1986.1133553