1. Miranda, F. A., G. Subramanyam, F. W. Van Keuls, R. R. Romanofsky, J. D. Warner, and C. H. Muller, "Design and development of ferroelectric tunable microwave components for Ku-and K-band satellite communication systems," IEEE Trans. on Microwave Theory and Tech., Vol. 48, No. 7, 1181-1189, Jul. 2000.
doi:10.1109/22.853458
2. Dionne, G. F. and D. E. Oates, "Tunability of microstrip finite resonator in the partially magnetized state," IEEE Trans. on Magn., Vol. 33, 3421-3423, Sept. 1997.
doi:10.1109/20.617964
3. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507
4. Hsiao, P. Y. and R. M. Weng, "Compact open-loop UWB filter with notched band," Progress In Electromagnetics Research Letters, Vol. 7, 149-159, 2009.
doi:10.2528/PIERL09022501
5. Huang, J. Q., Q. X. Chu, and C. Y. Liu, "Compact UWB filter based on surface-coupled structure with dual notched bands," Progress In Electromagnetics Research, Vol. 106, 311-319, 2010.
doi:10.2528/PIER10062203
6. Huynen, I., B. Stockbroeckx, and G. Verstraeten, "An effcient energetic variational principle for modeling one-port lossy gyrotropic YIG Straight Edge Resonators," IEEE Trans. on Microwave Theory and Tech., Vol. 46, No. 7, 932-939, Jul. 1998.
doi:10.1109/22.701445
7. Leon, G., R. R. Boix, and F. Medina, "Effcient full-wave characterization of microstrip lines fabricated on magnetized ferrites with arbitrarily oriented bias field," Journal Electromagnetic Waves and Applications, Vol. 15, No. 2, 223-251, 2001.
doi:10.1163/156939301X01372
8. Morales, C., J. Dewdney, S. Pal, S. Skidmore, K. Stojak, H. Srikanth, T. Weller, and J. Wang, "Tunable magneto-dielectric polymer nanocomposites for microwave applications," IEEE Trans. on Microwave Theory and Tech., Vol. 59, No. 2, 302-310, Feb. 2011.
doi:10.1109/TMTT.2010.2092788
9. Gao, B., L. Qiao, J. Wang, Q. Liu, F. Li, J. Feng, and D. Xue, "Microwave absorption properties of the Ni nanowires composite," J. Phys. D: Appl. Phys., Vol. 41, No. 235005, 1-5, Nov. 2008..
10. Yariv, A., "Coupled-mode theory for guided-wave optics," IEEE J. of Quantum Electronics, Vol. 9, No. 9, 919-933, Sept. 1973.
doi:10.1109/JQE.1973.1077767
11. Borah, S. and N. S. Bhattacharyya, "GCPWG technique for measurement of dielectric properties of magneto-polymer composite at microwave frequencies," Proc. IEEE, D.O.I. 10.1109/AEMC.2009.5430594, 2010.
12. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates - Part I: Design theory," IEEE Trans. on Microwave Theory and Tech., Vol. 20, No. 5, 304-308, May 1972.
doi:10.1109/TMTT.1972.1127749
13. Kaneki, T., "Analysis of linear microstrip using an arbitrary ferromagnetic substance as the substrate," Electronics Lett., Vol. 5, No. 19, 463, Sept. 1969.
14. Collins, R. E., Field Theory of Guided Waves, McGraw Hill, 152, 1960.
15. Pucel, R. A. and D. J. Masse, "Microstrip propagation on magnetic substrates - Part II: Experiment," IEEE Trans. on Microwave Theory and Tech., Vol. 20, 309-313, May 1972.
16. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheet," IEEE Trans. on Microwave Theory and Tech., Vol. 13, 172-185, 1965.
doi:10.1109/TMTT.1965.1125962
17. Hammerstad, E. and Φ. Jensen, "Accurate models for microstrip computer-aided design," Symposium on Microwave Theory and Tech., 407-409, Jun. 1980.
18. Edwards, T. C. and R. P. Owens, "2-18-GHz dispersion measurements on 10-100 Ω microstrip lines on sapphire," IEEE Trans. on Microwave Theory and Tech., Vol. 24, No. 8, 506-513, Aug. 1976.
doi:10.1109/TMTT.1976.1128888
19. Schneider, M. V., "Microstrip lines for microwave integrated circuits," The Bell System Technical Journal, Vol. 48, 1421-1444, May. 1969.
20. Pramanick, P. and P. Bhartia, "An accurate description of dispersion in microstrip," Microwave Journal, 89-96, Dec. 1983.
21. Borah, S. and N. S. Bhattacharyya, "Broadband measurement of complex permittivity of composite at microwave frequencies using scalar scattering parameters," Progress In Electromagnetics Research M, Vol. 13, 53-68, 2010.
doi:10.2528/PIERM10051203
22. Laverghetta, T. S., Microwave Materials and Fabrication Techniques, 3rd edition, Artech House, 2002.
23. Salahun, E., G. Tanne, and P. Queffelec, "Enhancement of design parameters for tunable ferromagnetic composite-based microwave devices: application to filtering devices," IEEE Trans. Microw. Theory Tech.: Microwave Symposium Digest, Vol. 3, No. 6-11, 1911-1914, Jun. 2004.
24. Deka, J. R., N. S. Bhattacharyya, and S. Bhattacharyya, "Development of low cost automated PC-based insertion loss measurement setup using a simple source and detector in X-band," IETE Tech. Rev., Vol. 22, 425, 2005.
25. Jacobs, I. S. and C. P. Bean, "An approach to elongated fine-particle magnets," Phys. Rev., Vol. 100, No. 4, 1060-1067, 1955.
doi:10.1103/PhysRev.100.1060
26. Morrish, A. H. and K. Haneda, "Magnetic structure of small NiFe2O4particles," J. Appl. Phys., Vol. 52, No. 3, 2496-2498, 1981.
doi:10.1063/1.328979
27. Nathani, H., S. Gubbala, and R. D. K. Misra, "Magnetic behavior of nickel ferrite-polyethylene nanocomposites synthesized by mechanical milling process," Materials Science and Engineering B, Vol. 111, 95-100, 2004.
doi:10.1016/j.mseb.2004.03.002
28. Lax, B., "Frequency and loss characteristics of microwave ferrite devices," Proc. IRE, Vol. 44, 1368-1386, Oct. 1956.
29. Gerson, I. J. and J. S. Nandan, "Surface electromagnetic modes of a ferrite slab," IEEE Trans. on Microwave Theory and Tech., Vol. 22, No. 8, 757-763, Aug. 1974.
doi:10.1109/TMTT.1974.1128332
30. Tsutsumi, M. and S. Tamura, "Microstrip line filters using yttrium iron garnet film," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 2, 400-402, Feb. 1992.
doi:10.1109/22.120114
31. Ishak, W. and K. W. Chang, "Tunable microwave resonators using magnetostatic wave in YIG films," IEEE Trans. on Microwave Theory and Tech., Vol. 34, No. 12, 1383-1393, Dec. 1986.
doi:10.1109/TMTT.1986.1133553