Vol. 120
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-06
Broadband and High-Gain Planar Vivaldi Antennas Based on Inhomogeneous Anisotropic Zero-Index Metamaterials
By
Progress In Electromagnetics Research, Vol. 120, 235-247, 2011
Abstract
Vivaldi antennas have broad applications in real practice due to the ultra wideband properties. However, their gain and directivity are relatively low. In this paper, a new method is presented to improve the gain and directivity of Vivaldi antennas in a broad band using inhomogeneous and anisotropic (IA) zero-index metamaterials (ZIM). ZIM have the ability to enhance the antenna directivity; anisotropic ZIM with only one component of the permittivity or permeability tensor approaching to zero can make impedance match to improve the radiation efficiency; and IA-ZIM can broaden the frequency bandwidth. Single- and multiple-layered planar IA-ZIM have been analyzed, designed, and fabricated, which can be embedded into the original Vivaldi antenna smoothly and compactly. The IA-ZIM-based Vivaldi antennas have good features of high gain, high directivity, low return loss, and broad bandwidth. Compared to the original Vivaldi antenna, the measurement results show that the gain has been increased by 3 dB and the half-power beam width has been decreased by 20 degrees with the reflection coefficient less than -10 dB from 9.5 GHz to 12.5 GHz after using IA-ZIM.
Citation
Bin Zhou, Hui Li, Xiaying Zou, and Tie-Jun Cui, "Broadband and High-Gain Planar Vivaldi Antennas Based on Inhomogeneous Anisotropic Zero-Index Metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710
References

1. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microwave Conf., No. 1, 101-105, 1979.
doi:10.1109/EUMA.1979.332681

2. Chiappe, M. and G. Gragnani, "Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 2, 1885-1891, 2006.
doi:10.1109/TIM.2006.884289

3. Schantz, H., "Introduction to ultra-wideband antennas," IEEE Conference on Ultra Wideband Systems and Technologies, No. 3, 1-9, 2003.
doi:10.1109/UWBST.2003.1267792

4. Ellis, T. J. and G. M. Rebeiz, "MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics," IEEE MTT-S Int. Microwave Symp. Dig., No. 4, 1157-1160, 1996.

5. Lovat, G., et al. "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925

6. Zhou, H., et al. "A novel high-directivity microstrip patch antenna based on zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 6, 538-541, 2009.
doi:10.1109/LAWP.2009.2018710

7. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, No. 5, 295-328, 2005.
doi:10.2528/PIER04070701

8. Yang, R., Y.-J. Xie, P.Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1221-1233, 2006.
doi:10.1163/156939306777442908

9. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

10. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103

11. Ma, Y., et al. "Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial," Applied Physics Letters, Vol. 94, No. 7, 2009.

12. Cheng, Q., et al. "Radiation of planar electromagnetic waves by line source in anisotropic metamaterials," Journal of Physics D: Applied Physics, Vol. 43, No. 8, 35406, 2010.

13. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 9, 2011.

14. Tang, W. X., H. Zhao, X. Zhou, J. Y. Chin, and T.-J. Cui, "Negative index material composed of meander line and SRRs," Progress In Electromagnetics Research B, Vol. 8, 103-114, 2008.
doi:10.2528/PIERB08051201

15. Smith, D., et al. "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 11, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

16. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4--50-GHz UWB application," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 12, 1051-1057, 2011.
doi:10.1109/TMTT.2011.2113970