Vol. 120
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-01
FEM Modeling for Performance Evaluation of an Electromagnetic Oncology Deep Hyperthermia Applicator When Using Monopole, Inverted T, and Plate Antennas
By
Progress In Electromagnetics Research, Vol. 120, 99-125, 2011
Abstract
This study focuses on the evaluation of the performance of a rectangular waveguide for deep hyperthermia when different antennas are used. Although there are several models of hyperthermia applicators, there are no studies of the advantages of employing different antennas for waveguides used in deep seated tumor treatments. Monopole antennas are the most used radiating elements inside waveguides. Here, the modeling of a monopole and two new proposed antennas, inverted T and plate, in order to find their optimal performance is presented. Parameters like output power, SWR and transmission coefficient generated for each modeled antenna were calculated by using the finite element method. The antennas with the best performance were selected in order to model an applicator-phantom system, which was used to calculate the temperature distributions generated inside the muscle phantom. The models were based on Maxwell and bioheat equations. Finally, thermal distributions were obtained and compared. The results indicate that the plate antenna generated a better focusing. The SWR obtained was 1.25, the output power was 54.71 W of 66 W applied, and the 42°C isotherm had a size of 2 cm x 2 cm.
Citation
Citlalli Jessica Trujillo-Romero, Lorenzo Leija-Salas, and Arturo Vera-Hernandez, "FEM Modeling for Performance Evaluation of an Electromagnetic Oncology Deep Hyperthermia Applicator When Using Monopole, Inverted T, and Plate Antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011.
doi:10.2528/PIER11071809
References

1. Gardner, R. A., H. I. Vargas, J. B. Block, C. L. Vogel, A. J. Fenn, G. V. Kuehl, and M. Doval, "Focused microwave phased array thermotherapy for primary breast cancer," Annals of Surgical Oncology, Vol. 9, 326-332, May 2002.
doi:10.1007/BF02573866

2. Lagendijk, J. J., "Hyperthermia treatment planning," Phys. Med. Biol., Vol. 45, R61-76, May 2000.
doi:10.1088/0031-9155/45/5/201

3. Sabariego, R. V., L. Landesa, and F. Obelleiro, "Design of a microwave array hyperthermia applicator with a semicircular reflector ," Med. Biol. Eng. Comput., Vol. 37, 612-617, Sep. 1999.
doi:10.1007/BF02513356

4. Gupta, R. C. and S. P. Singh, "Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body," Progress In Electromagnetics Research, Vol. 62, 107-125, 2006.
doi:10.2528/PIER06012801

5. Cheung, A. Y. and A. Neyzari, "Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques," Cancer. Res., Vol. 44, 4736s-4744s, Oct. 1984.

6. Kato, H. and T. Ishida, "Present and future-status of noninvasive selective deep heating using RF in hyperthermia," Med. Biol. Eng. Comput., Vol. 31, S2-S11, Jul. 1993.
doi:10.1007/BF02446643

7. Wiersma, J. and J. D. P. Van Dijk, "RF hyperthermia array modelling; validation by means of measured EM-field distributions," Int. J. Hyperthermia, Vol. 17, 63-81, Jan. 2001.
doi:10.1080/02656730150201606

8. Nilsson, P., T. Larsson, and B. Persson, "Absorbed power distributions from two tilted waveguide applicators," Int. J. Hyperthermia, Vol. 1, 29-43, Jan.-Mar. 1985.
doi:10.3109/02656738509029272

9. Chen, Z. N., K. Hirasawa, and K. Wu, "A broad-band sleeve monopole integrated into parallel-plate waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1160-1163, Jul. 2000.
doi:10.1109/22.848502

10. Park, M. Y. and H. J. Eom, "Analysis of a coaxially fed monopole in a rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 15, 253-255, Apr. 2005.
doi:10.1109/LMWC.2005.845732

11. Bialkowski, M. E., "On the link between top-hat monopole antennas, disk-resonator diode mounts and coaxial-to-waveguide transitions," IEEE Transactions on Antennas and Propagation, Vol. 48, 1011-1013, Jun. 2000.
doi:10.1109/8.865244

12. Bialkowski, M. E., "Analysis of a coaxial-to-wave-guide adapter including a discended probe and a tuning post," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 344-349, Feb. 1995.
doi:10.1109/22.348094

13. Bui, V. P., X.-C. Wei, and E. P. Li, "An efficient simulation technology for characterizing the ultra-wide band signal propagation in a wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2575-2588, 2010.
doi:10.1163/156939310793675691

14. Paulsen, K. D., Calculation of Power Deposition Patterns in Hyperthermia, Clinical Thermology: Thermal Modeling and Thermal Dosimetry, Vol. 2, Springer-Verlag, 1988.

15. Marcuvitz, N., The Institution of Engineering and Technology, Waveguide Handbook.

16. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
doi:10.2528/PIER09060801

17. Gabriele, P., T. Ferrara, B. Baiotto, E. Garibaldi, P. G. Marini, G. Penduzzu, V. Giovannini, F. Bardati, and C. Guiot, "Radio hyperthermia for re-treatment of superficial tumours," Int. J. Hyperthermia, Vol. 25, 189-98, May 2009.
doi:10.1080/02656730802669593

18. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

19. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

20. Carr, J. J., Practical Antenna Handbook, 4th edition, Mcgraw-Hill Professional, 2001.

21. Kumaradas, J. C. and M. D. Sherar, "An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design," Int. J. Hyperthermia, Vol. 18, 441-53, Sep.-Oct. 2002.

22. Van Rhoon, G. C., P. J. Rietveld, and J. Van Der Zee, "A 433MHz Lucite cone waveguide applicator for superficial hyperthermia," Int. J. Hyperthermia, Vol. 14, 13-27, Jan.-Feb. 1998.

23. Frickey, D. A., "Conversions between S, Z, Y , H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 205-211, 1994.
doi:10.1109/22.275248

24. Liang, C.-H., Y. Shi, and T. Su, "S parameter theory of lossless block network," Progress In Electromagnetics Research, Vol. 104, 253-266, 2010.
doi:10.2528/PIER10022611

25. Pennes, H. H., "Analysis of skin, muscle and brachial arterial blood temperatures in the resting normal human forearm," Am. J. Med. Sci., Vol. 215, 354, Mar. 1948.

26. Mohsin, S. A., N. M. Sheikh, and W. Abbas, "MRI induced heating of artificial bone implants," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 799-808, 2009.
doi:10.1163/156939309788019796

27. Ebrahimi-Ganjeh, M. A. and A. R. Attari, "Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia," Progress In Electromagnetics Research B, Vol. 4, 273-283, 2008.
doi:10.2528/PIERB08011403

28. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies," , Report N.AL/OE-TR-1996-0037, Occupational and environmental heal-th directorate, Radiofrequency Radiation Division, Brooks Air Force Base, Texas (USA), June 1996.