Vol. 120
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-22
Experimental Measurement Method to Determine the Permittivity of Extra Thin Materials Using Resonant Metamaterials
By
Progress In Electromagnetics Research, Vol. 120, 327-337, 2011
Abstract
The permittivity of extra thin silk cloth is usually measured through some complex methods in the past. Here we propose a convenient and flexible method to measure the permittivity of extra thin silk cloth using resonant metamaterial structures. The metamaterial structures used here are symmetric split ring resonators (SRRs). The principle is that the resonant frequency of the SRRs is very sensitive to the permittivity of the surrounding medium. Therefore, the relative permittivity of an extra thin medium as silk cloth can be determined. Our experimental measurement shows that the relative permittivity of the silk cloth is 4.5. A piece of printing paper is also measured with a relative permeability of 1.4. The effectiveness of the method in determining the permittivity of a solid medium is very useful in future applications.
Citation
Xu Su, Lei Yang, Liang Huang, and Hongsheng Chen, "Experimental Measurement Method to Determine the Permittivity of Extra Thin Materials Using Resonant Metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.
doi:10.2528/PIER11071803
References

1. Elisseeff, V., The Silk Roads: Highways of Culture and Commerce, Berghahn Books/UNESCO, New York, 2000.

2. Vainker, S., Chinese Silk: A Cultural History, Rutgers University Press, Piscataway, New Jersey, 2004.

3. Tao, H., et al. "Silk metamaterials: Metamaterial silk composites at terahertz frequencies," Adv. Mater., Vol. 22, 3527-3511, 2010.

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.

5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, 2001.

6. Zhang, W. B., H. Chen, and H. O. Moser, "Subwavelength imaging in a cylindrical hyperlens based on S-string resonators," Appl. Phys. Lett., Vol. 98, 073501, 2011.

7. Chen, H., et al. "Equivalent circuit model for left-handed metamaterials," Journal of Applied Physics, Vol. 100, 024915, 2006.

8. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.

9. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.

10. Zhang, W. B., H. Chen, and H. O. Moser, "Subwavelength imaging in a cylindrical hyperlens based on S-string resonators," Appl. Phys. Lett., Vol. 98, 073501, 2011.

11. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.

12. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1783, 2006.

13. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.

14. Schurig, D., et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 997-980, 2006.

15. Zhang, B., Y. Luo, X. G. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 2011.

16. Chen, X. Z., et al. "Macroscopic invisibility cloak of visible light," Nat. Commun., Vol. 2, 176, 2011.

17. Cheng, Q., W. X. Jiang, and T.-J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.

18. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

19. Alici, K. B., A. E. Serebryannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1183-1193, 2010.

20. Pu, T.-L., K.-M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1207-1217, 2010.

21. Zhou, H., S. Qu, Z. Pei, Y. Yang, J. Zhang, J. Wang, H. Ma, C. Gu, X. Wang, Z. Xu, W. Peng, and P. Bai, "A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1387-1396, 2010.

22. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.

23. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.

24. Kobayashi, Y. and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 7, 586-592, 1985.

25. Duvillaret, L., F. Garet, and J. L. Coutaz, "A reliable method for extraction of material parameters in Terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum. Electron., Vol. 2, 739, 1996.

26. Pupeza, I., R. Wilk, and M. Koch, "Highly accurate optical material parameter determination with THz time-domian spectroscopy," Opt. Express, Vol. 24, 4335, 2007.

27. O'Brien, S. and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys.: Condens. Matter, Vol. 14, 6383, 2002.

28. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.

29. Benedek, P. and P. Silvester, "Equivalent capacitance for microstrip gaps and dteps," IEEE Trans. Microw. Theory Tech., Vol. 20, 729-733, 1972.

30. Liu, J.-C., D.-S. Shu, B.-H. Zeng, and D.-C. Chang, "Improved equivalent circuits for complementary split-ring resonator-based high-pass filter with C-shaped couplings," IET Microw. Antennas Propag., Vol. 2, No. 6, 622-626, 2008.

31. Huang, J., "Low cross-pol linearly polarized microstrip array," Antennas and Propagation Society International Symposium, Vol. 4, 1750-1753, 1990.

32. Ansari, J. A., N. P. Yadav, P. Singh, and A. Mishra, "Compact half U-slot loaded shorted rectangular patch antenna for broadband operation," Progress In Electromagnetics Research M, Vol. 9, 215-226, 2009.