Vol. 120
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-22
Evolution of Beam Quality and Shape of Hermite-Gaussian Beam in Non-Kolmogorov Turbulence
By
Progress In Electromagnetics Research, Vol. 120, 339-353, 2011
Abstract
There are many applications of beam quality and beam shape in turbulent atmosphere. Because M2 factor and kurtosis parameters are often used to descripe beam quality and intensity flatness, the evolution of these two parameters of Hermite-Gaussian beam in turbulent atmosphere have been studied in both theory and numerical calculation. Results show that the spectrum of refractive index fluctuations has a strong effect on these two parameters. For some spectral models, these two parameters are very sensitive to some factors of turbulence. But for other spectral models, the factor is very insensitive to these factors. For example, when the exponent of the spectrum is very small, M2 factor is very insensitive to the outer scale of turbulence. But when the exponent of the spectrum is very large, the M2 factor is very insensitive to the inner scale. In addition, we also found that there are many differences between the kurtosis parameters under different conditions. For example, the kurtosis parameters may be very large during propagation. Namely, beam shape may be very sharp under some conditions. When the effects of turbulence is very large or very small, beam shape is very flat.
Citation
Xiuxiang Chu, "Evolution of Beam Quality and Shape of Hermite-Gaussian Beam in Non-Kolmogorov Turbulence," Progress In Electromagnetics Research, Vol. 120, 339-353, 2011.
doi:10.2528/PIER11071307
References

1. Vilnrotter, V., "Optical array receiver for communication through atmospheric turbulence," J. Lightwave Tech., Vol. 23, 1664-1675, 2005.
doi:10.1109/JLT.2004.841434

2. Lee, H.-S., "A photon modeling method for the characterization of indoor optical wireless communication," Progress In Electromagnetics Research, Vol. 92, 121-136, 2009.
doi:10.2528/PIER09030506

3. Extermann, J., P. Béjot, L. Bonacina, P. Billaud, J. Kasparian, and J. P. Wolf, "Effects of atmospheric turbulence on remote optimal control experiments," Appl. Phys. Lett., Vol. 92, 041103-5, 2008.
doi:10.1063/1.2838308

4. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Further study of rainfall effect on VHF forested radio-wave propagation with four-layered model," Progress In Electromagnetics Research, Vol. 99, 149-161, 2009.
doi:10.2528/PIER09102201

5. Duff, E. A. and D. C. Washburn, "The magic of relay mirrors," Proc. SPIE, Vol. 5413, 137-144, 2004.
doi:10.1117/12.567096

6. Li, Y. and H. Ling, "Numerical modeling and mechanism analysis of VHF wave propagation in forested environments using the equivalent slab model," Progress In Electromagnetics Research, Vol. 91, 17-34, 2009.
doi:10.2528/PIER09012306

7. Golbraikh, E., H. Branover, N. S. Kopeika, and A. Zilberman, "Non-Kolmogorov atmospheric turbulence and optical signal propagation," Nonlinear Proc. in Geoph., Vol. 13, 297-301, 2006.
doi:10.5194/npg-13-297-2006

8. Hasar, U. C., G. Akkaya, M. Aktan, C. Gozu, and A. C. Aydin, "Water-to-cement ratio prediction using anns from non-destructive and contactless microwave measurements," Progress In Electromagnetics Research, Vol. 94, 311-325, 2009.
doi:10.2528/PIER09061008

9. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, "Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence," Opt. Eng., Vol. 47, No. 2, 026003-9, 2008.
doi:10.1117/1.2870113

10. Alexopoulos, A., "Effect of atmospheric propagation in RCS predictions," Progress In Electromagnetics Research, Vol. 101, 277-290, 2010.
doi:10.2528/PIER09121509

11. Zilberman, A., E. Golbraikh, and N. S. Kopeika, "Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model," Appl. Opt., Vol. 47, 6385-6391, 2008.
doi:10.1364/AO.47.006385

12. Gay-Fernandez, J. A., M. Garcia Sanchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

13. Pavelyev, A. G., Y.-A. Liou, J. Wickert, K. Zhang, C.-S. Wang, and Y. Kuleshov, "Analytical model of electromagnetic waves propagation and location of inclined plasma layers using occultation data," Progress In Electromagnetics Research, Vol. 106, 177-202, 2010.
doi:10.2528/PIER10042707

14. Rao, C., W. Jiang, and N. Ling, "Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence," J. Mod. Opt., Vol. 47, 1111-1126, 2000.
doi:10.1080/09500340008233408

15. Toselli, I., L. C. Andrews, R. L. Phillips, and V. Ferrero, "Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence," Proc. SPIE 65510E, Vol. 1, No. 12, 2007.

16. Wu, G., H. Guo, S. Yu, and B. Luo, "Spreading and direction of Gaussian{Schell model beam through a non-Kolmogorov turbulence," Opt. Lett., Vol. 35, 715, 2010.
doi:10.1364/OL.35.000715

17. Cai, Y. and S. He, "Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere," Appl. Phys. Lett., Vol. 89, 041117-9, 2006.

18. Eyyuboğlu, H. T. and Y. Baykal, "Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere," Applied Optics, Vol. 44, No. 6, 976-983, 2005.
doi:10.1364/AO.44.000976

19. Zhang, E., X. Ji, and B. Lu, "Changes in the spectrum of diffracted pulsed cosh-Gaussian beams propagating through atmospheric turbulence," Journal of Optics A: Pure and Applied Optics, Vol. 9, 951-957, 2007.
doi:10.1088/1464-4258/9/10/028

20. Zhu, Y. and D. Zhao, "Propagation of a stochastic electromagnetic Gaussian Schell-model beam through an optical system in turbulent atmosphere," Applied Physics B: Lasers and Optics, Vol. 96, 155-160, 2009.

21. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. K. Baykal, "Average intensity and spreading of partially coherent standard and elegant laguerre-gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.
doi:10.2528/PIER10021901

22. Golbraikh, E. and S. S. Moiseev, "Different spectra formation in the presence of helical transfer," Phys. Lett. A, Vol. 305, 173-175, 2002.
doi:10.1016/S0375-9601(02)01452-4

23. Wei, H. Y., Z. S. Wu, and Q. Ma, "Log-amplitude variance of laser beam propagation on the slant path through the turbulent atmosphere," Progress In Electromagnetics Research, Vol. 108, 277-291, 2010.
doi:10.2528/PIER10072205

24. Wandzura, S. M., "Systematic corrections to quadratic approximations for power-law structure functions: The delta expansion," J. Opt. Soc. Am., Vol. 71, 321-326, 1981.
doi:10.1364/JOSA.71.000321

25. Chu, X. and G. Zhou, "First-order approximation in studying beam spreading of cosh-Gaussian and cos-Gaussian beam in Kolmogorov turbulence," Appl. Phy. B, Vol. 101, 381-392, 2010.
doi:10.1007/s00340-010-4054-2

26. Salem, M., T. Shirai, A. Dogariu, and E. Wolf, "Long-distance propagation of partially coherent beams through atmospheric turbulence," Optics Commun., Vol. 216, 261-265, 2003.
doi:10.1016/S0030-4018(02)02340-4

27. Dan, Y. and B. Zhang, "Second moments of partially coherent beams in atmospheric turbulence," Opt. Lett., Vol. 34, 563-565, 2009.
doi:10.1364/OL.34.000563

28. Zhou, P., Y. Ma, X. Wang, H. Zhao, and Z. Liu, "Average spreading of a Gaussian beam array in non-Kolmogorov turbulence," Opt. Lett., Vol. 35, 1043-1045, 2010.
doi:10.1364/OL.35.001043

29. Wu, G., T. Zhao, J. Ren, J. Zhang, X. Zhang, and W. Li, "Beam propagation factor of partially coherent Hermite-Gaussian beams through non-Kolmogorov turbulence," Opt. & Laser Tech., Apr. 11, 2011.

30. Huang, Y., G. Zhao, Z. Duan, D. He, Z. Gao, and F. Wang, "Spreading and M2-factor of elegant Hermite-Gaussian beams through non-Kolmogorov turbulence," J. Mod. Opt., May 6, 2011.

31. Wu, G., B. Luo, S. Yuc, A. Dang, T. Zhao, and H. Guo, "Spreading of partially coherent Hermite-Gaussian beams through a non-Kolmogorov turbulence," Optik --- International Journal for Light and Electron Optics, Mar. 9, 2011.

32. Qiu, Y., H. Guo, and Z. Chen, "Paraxial propagation of partially coherent Hermite-Gauss beams," Opt. Commun., Vol. 245, 21-26, 2005.
doi:10.1016/j.optcom.2004.10.032

33. Shirai, T., A. Dogariu, and E. Wolf, "Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 20, 1094-1102, 2003.
doi:10.1364/JOSAA.20.001094

34. Laabs, H., "Propagation of Hermite-Gaussian-beams beyond the paraxial approximation," Optics Commun., Vol. 147, 1-4, 1998.
doi:10.1016/S0030-4018(97)00607-X

35. Ji, X., X. Chen, and B. Lü, "Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 25, 21-28, 2008.
doi:10.1364/JOSAA.25.000021

36. Wu, Z.-S., H.-Y. Wei, R.-K. Yang, and L.-X. Guo, "Study on scintillation considering inner- and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence," Progress In Electromagnetics Research, Vol. 80, 277-293, 2008.
doi:10.2528/PIER07112505