Vol. 26
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-09-04
RCS Reduction for a FSS-Backed Reflectarray Using a Ring Element
By
Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011
Abstract
A novel RCS (radar cross section) reduction configuration for a reflectarray antenna, employing the appropriate FSS (frequency-selective surface) as a ground, is proposed. The performance of a reflectarray element backed either by a solid metal ground plane or a frequency-selective surface is compared. To optimize the performance of the designed frequency-selective surface, a parametric study is carried out using Ansoft HFSS. Then, a prime-focus FSS-backed reflectarray is fabricated and tested. The measurements demonstrate that the gain of a FSS-backed reflectarray is about 0.5 dB lower than its counterpart backed by a solid ground plane. The RCS is nearly the same at the operating band of 10 GHz, while out of this band the FSS-backed reflectarray reduces the RCS strongly, especially at 1 GHz with the reduction up to 20 dB. Compared with the RCS reductions obtained in the other papers, the FSS-backed reflectarray using a ring element can also obtain a good result.
Citation
Li-Shi Ren, Yong-Chang Jiao, Jin-Juan Zhao, and Fan Li, "RCS Reduction for a FSS-Backed Reflectarray Using a Ring Element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201
References

1. Zubir, F., M. K. A. Rahim, O. B. Ayop, and H. A. Majid, "Design and analysis of microstrip reflectarray antenna with Minkowski shape radiation element," Progress In Electromagnetics Research B, Vol. 24, 317-331, 2010.
doi:10.2528/PIERB10071208

2. Tahir , F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506

3. Li, H., B.-Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
doi:10.1163/156939307783239528

4. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1662-1664, Jul. 2003.
doi:10.1109/TAP.2003.813611

5. Hasani , H., M. Kamyab, and A. Mirkamali, "Broadband re°ectarray antenna incorporating disk elements with attached phase-delay lines," IEEE Antennas Wireless Propag. Lett., Vol. 9, 156-158, 2010.
doi:10.1109/LAWP.2010.2044473

6. Li, , Q. Y., Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular patch/ring-combination re°ectarray element and its application," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1119-1122, 2009.
doi:10.1109/LAWP.2009.2033620

7. Euler , M. and V. F. Fusco, "RCS control using cascaded circularly polarized frequency selective surfaces and an AMC structure as a switchable twist polarizer," Microwave Opt. Technol. Lett., Vol. 52, 577-580, 2010.
doi:10.1002/mop.24979

8. White , M. O., "Radar cross-section: Measurement, prediction and control," Electron. Commun. Eng. J., Vol. 10, 169-180, 1998.
doi:10.1049/ecej:19980403

9. Ren, , L.-S., Y.-C. Jiao, F. Li, J.-J. Zhao, and G. Zhao, "A novel dual-petal loop element for broadband reflectarray," Progress In Electromagnetics Research Letters, Vol. 20, 157-163, 2011.

10. Misran, N., R. Cahill, and V. F. Fusco, "RCS reduction technique for reflectarray antennas," Electronics Lett., Vol. 39, 1630-1631, 2003.
doi:10.1049/el:20031070

11. Li, , H., B.-Z. Wang, G. Zheng, W. Shao, and L. Guo, "A reFLectarray antenna backed on FSS for low RCS and high radiation performances," Progress In Electromagnetics Research C, Vol. 15, 145-155, 2010.
doi:10.2528/PIERC10070303

12. Li, L., Q. Chen, Q.-W. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, "Frequency selective reFLectarray using crossed-dipole elements with square loops for wireless communication applications," IEEE Trans. Antennas Propag., Vol. 59, 89-99, 2011.
doi:10.1109/TAP.2010.2090455