Vol. 25
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-08-12
A Numerical Analysis of a Dipole Antenna in the Vicinity of a Homogeneous BI-Isotropic Object
By
Progress In Electromagnetics Research Letters, Vol. 25, 175-183, 2011
Abstract
A numerical solution for the dipole antenna with a bi-isotropic object in the vicinity is developed. This solution is based on the combined surface integral equation which could deal with homogeneous situation. A fields splitting scheme is deployed to circumvent the difficulties caused by the complexity of constitutive relationships of bi-isotropic materials. With the aids of MoM, a FORTRAN program can be developed. At the end of this paper, some numerical results are presented.
Citation
Hui Zhu, Bin-Jie Hu, Xiu Zhang, and Jian Bao, "A Numerical Analysis of a Dipole Antenna in the Vicinity of a Homogeneous BI-Isotropic Object," Progress In Electromagnetics Research Letters, Vol. 25, 175-183, 2011.
doi:10.2528/PIERL11071002
References

1. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonre°ecting shields and antenna radomes," Electronics Letters, Vol. 29, 1048-1049, 1993.
doi:10.1049/el:19930699

2. Pelet , P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Propag., Vol. 38, 90-98, Jan. 1990.
doi:10.1109/8.43593

3. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 1978.
doi:10.1016/0021-9797(78)90189-3

4. Bohren, C. F., "Scattering of electromagnetic waves by an optically active spherical shell," J. Chem. Phys, Vol. 62, 1975.
doi:10.1063/1.430622

5. Shi , Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001

6. Shi, Y., X. Luan, J. Qin, C. J. Lv, and C. H. Liang, "Multilevel Green's function interpolation method solution of volume/surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.
doi:10.2528/PIER10060209

7. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., Vol. 20, 1969.
doi:10.1007/BF00382412

8. Barber, , P. and C. Yeh, "Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies," Appl. Opt., Vol. 14, 2864-2872, Dec. 1975.

9. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., 709-718, 1977.
doi:10.1029/RS012i005p00709

10. Kucharski, A. A., "A method of moment solution for electromagnetic scattering by inhomogeneous dielectric bodies of revolution," IEEE Trans. Antennas Propag., Vol. 48, 1202-1210, Aug. 2000.
doi:10.1109/8.884488

11. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, 1077-1084, May 2003.
doi:10.1109/TAP.2003.811501

12. Hasanovic, M., C. Mei, J. R. Mautz, and E. Arvas, "Scattering from 3-D inhomogeneous chiral bodies of arbitrary shape by the method of moments," IEEE Trans. Antennas Propag., Vol. 55, 1817-1825, Jun. 2007.
doi:10.1109/TAP.2007.898590

13. Yuccer, M., J. R. Mautz, and E. Arvas, "Method of moments solution for the radar cross section of a chiral body of revolution," IEEE Trans. Antennas Propag., Vol. 53, 1163-1167, Mar. 2005.
doi:10.1109/TAP.2004.842664

14. Wang , D. X., K. N. Yung, R. S. Chen, and P. Y. Lau, "Scattering characteristics of general bi-isotropic objects using surface integral equations," Radio Sci., Vol. 41, 2006.
doi:10.1029/2005RS003315

15. Bao, J., D. X. Wang, and E. K. N. Yung, "Electromagnetic scattering from an arbitrarily shaped bi-isotropic body of revolution," IEEE Trans. Antennas Propag., Vol. 58, 1689-1698, May 2010.
doi:10.1109/TAP.2010.2055776

16. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3d Bi-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706

17. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, "Electromagnetic Waves in Chiral and Bi-isotropic Media," Artech House, Norwood, Mass, 1994.

18. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

20. Bao , J., "Electromagnetic wave scattering from an arbitrarily shaped bi-isotropic body of revolution," M. Phil. Elect. Eng., City University of HK, Hong Kong, 2007.