Vol. 25
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-08-07
Enhancing Terahertz Radiation from Dipole Photoconductive Antenna by Blending Tips
By
Progress In Electromagnetics Research Letters, Vol. 25, 127-134, 2011
Abstract
We study the rectangular tips of the dipole photoconductive antenna, which has been widely used for terahertz radiation and detection, with different blend radii effect on the emission performance of terahertz (THz) radiation. For the amplitude of THz radiation pulse is proportional to the local electric field in the gap, the increased maximum bias electric field by blending tips is able to achieve higher THz radiation power. Both considering the influence to the maximum bias electric field and the emission efficiency, the blend radius of the rectangular tips is suggest to be larger than 5 μm and the radiation power is largely enhanced. Comparing to the previous work, our method has better THz radiation performance.
Citation
Junming Diao, Feng Yang, Lin Du, Jun Ou Yang, and Peng Yang, "Enhancing Terahertz Radiation from Dipole Photoconductive Antenna by Blending Tips," Progress In Electromagnetics Research Letters, Vol. 25, 127-134, 2011.
doi:10.2528/PIERL11070714
References

1. Kado, Y. and T. Nagatsuma, "Exploring sub-THz waves for communications, imaging, and gas sensing," PIERS Proceedings, 42-47, Beijing, China, March 23-27, 2009.

2. Ogawa, Y., S. Hayashi, C. Otani, and K. Kawase, "Terahertz sensing for ensuring the safety and security," PIERS Online, Vol. 4, No. 3, 396-400, 2008.
doi:10.2529/PIERS070831051620

3. Hoshina , H., A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, "Terahertz pulsed imaging of frozen biological tissues," Appl. Phys. Lett., Vol. 94, 123901, March 2009.
doi:10.1063/1.3106616

4. Doi, Y., S. Hirooka, A. Sato, M. Kawada, H. Shibai, Y. Okamura, S. Makiuti, T. Nakagawa, N. Hiromoto, and M. Fujiwara, "Large-format and compact stressed Ge: Ga array for the ASTRO-F (IRIS) mission," Adv. Space. Res., Vol. 30, No. 9, 2099-2104, November 2002.
doi:10.1016/S0273-1177(02)00594-X

5. Padilla, W. J., A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett., Vol. 96, No. 10, 7401, March 2006.
doi:10.1103/PhysRevLett.96.107401

6. Van Exter, , M., C. Fattinger, and D. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett., Vol. 55, No. 4, 337-339, May 1989.
doi:10.1063/1.101901

7. Tani, M., S. Matsuura, K. Sakai, and S. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt. , Vol. 36, No. 30, 7853-7859, October 1997.
doi:10.1364/AO.36.007853

8. Cai, Y., I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, "Design and performance of singular electric field terahertz photoconducting antennas," Appl. Phys. Lett., Vol. 71, No. 15, 2076-2078, August 1997.
doi:10.1063/1.119346

9. Mendis, R., C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, "Tunable CW-THz system with a log-periodic photocondutive antenna emitter," Solid-State Electron., Vol. 48, No. 10-11, 2041-2045, March 2004.
doi:10.1016/j.sse.2004.05.055

10. Awad, M., M. Nagel, H. Kurz, J. Herfort, and K. Ploog, "Characterization of low temperature GaAs antenna array terahertz emitters," Appl. Phys. Lett., Vol. 91, 181124, November 2007.
doi:10.1063/1.2800885

11. Miyamaru, F., Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, "Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas," Appl. Phys. Lett., Vol. 96, 211104, May 2010.
doi:10.1063/1.3436724

12. Maraghechi, P. A. Y. Elezzabi, "Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters," Opt. Express, Vol. 18, No. 26, 27336, December 2010.
doi:10.1364/OE.18.027336

13. Zhong , S., Y.-C. Shen, H. Shen, Y. Huang, "FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance," PIERS Online, Vol. 6, No. 2, 153-156, 2010.
doi:10.2529/PIERS090906095006

14. Darrow, J. T., X.-C. Zhang, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconducting antennas," IEEE J. Quantum Electron., Vol. 28, No. 6, 1607-1616, June 1992.
doi:10.1109/3.135314

15. Ferguson , B. and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Mater., Vol. 1, 26-33, September 2002.
doi:10.1038/nmat708

16. Yang, J., W. Fan, and B. Xue, "Biased electric field analysis of a photoconductive antenna for terahertz generation," Nucl. Instr. and Meth. A, Vol. 637, No. 1, S165-S167, May 2011.
doi:10.1016/j.nima.2010.02.048

17. Duvillaret, L., F. Garet, J.-F. Roux, and J.-L. Coutaz, "Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas," IEEE J. Sel. Top. Quantum Electron., Vol. 7, No. 4, 615-623, July/August 2001.

18. Uhd Jepsen , P., R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B, Vol. 13, No. 11, 2424-2436, November 1996.
doi:10.1364/JOSAB.13.002424