Vol. 20
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-07
A Novel Design of Modified Composite Right/Left-Handed Unit Cell
By
Progress In Electromagnetics Research M, Vol. 20, 13-27, 2011
Abstract
DeDesign procedure for a modified Composite Right/Left Handed (CRLH) unit cell is represented. The ferroelectric interdigital capacitor (IDC) is used as a tuned capacitor, and spiral inductor is utilized to implement inductors. A modified CRLH unit cell is attained by moving the shunt inductor of conventional unit cell to both ends with doubled values. In this manner, only one bias network would be required for each unit cell. The parameters of the designed unit cell are obtained so that the Bloch impedance to be equal to 50Ω and the Bloch propagation constant to have one zero at the operational frequency. The operational frequency is chosen equal to 11.45 GHz, which is in the Ku-band and in middle of the up-link satellite communications. To design the modified unit cell, initially, the unit cell without a shunt capacitor is constructed. This would result in Π-model structure for which the element dimensions are varied to reach the desired values. Next, the shunt capacitor is added to the model and its length is varied until the balanced condition is achieved.
Citation
Shahab Ramezanpour, Saeid Nikmehr, and Ali Pourziad, "A Novel Design of Modified Composite Right/Left-Handed Unit Cell," Progress In Electromagnetics Research M, Vol. 20, 13-27, 2011.
doi:10.2528/PIERM11070713
References

1. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 25-39, Oct. 2008.
doi:10.1109/MAP.2008.4674709

2. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

3. Abdelaziz, A. F., T. M. Abuelfadl, and O. L. Elsayed, "Realization of composite right/left-handed transmission line using coupled lines," Progress In Electromagnetics Research, Vol. 92, 299-315, 2009.
doi:10.2528/PIER09040305

4. Camacho-Penalosa, C., T. M. Martin-Guerrero, J. Esteban, and J. E. Page, "Derivation and general properties of artifitial lossless balanced composite right/left-handed transmission line of arbitrary order," Progress In Electromagnetics Research B, Vol. 13, 151-169, 2009.
doi:10.2528/PIERB09011002

5. Sanchez-Martinez, J. J., E. Marquez-Segura, P. Otero, and C. Camacho-Penalosa, "Artifitial transmission line with left/right-handed behaviour based on wire bonded interdigital capacitor," Progress In Electromagnetics Research B, Vol. 11, 245-264, 2009.
doi:10.2528/PIERB08120804

6. Upadhyay, D. K. and S. Pal, "Design of novel improved unit cell for composite right/left-handed transmission line based microwave circuits," International Journal of Engineering Science and Technology (IJEST), Vol. 3, No. 6, 4962-4967, 2011.

7. Lin, S., "Composite right/left-handed band-pass filters with wide fractional bandwidth based on dual-metal-plane structure," Microw. Opt. Technol. Letter, Vol. 52, 1810-1813, 2010.
doi:10.1002/mop.25344

8. Dong, Y. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures," IEEE Trans. on Antennas and Propagation, Vol. 59, 767-775, Mar. 2011.
doi:10.1109/TAP.2010.2103025

9. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 161-173, Jan. 2005.
doi:10.1109/TMTT.2005.856086

10. Abdalla, M., K. Phang and G. V. Eleftheriades, "A planar electronically steerable patch array using tunable PRI/NRI phase shifters," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 3, 531-541, Mar. 2009.
doi:10.1109/TMTT.2008.2012312

11. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley and Sons Inc., 2006.

12. Bahl, I., Lumped Elements for RF and Microwave Circuits, Artech House Inc., 2003.

13. Nath, J., D. Ghosh, J. Maria, A. I. Kingon, W. Fathelbab, P. D. Franzon, and M. B. Steer, "An electronically tunable microstrip bandpass filter using thin-film barium strontium titanate (BST) varactors," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 9, 2707-2711, Sep. 2005.
doi:10.1109/TMTT.2005.854196

14. Tong, W., Z. Hu, H. Zhang, C. Caloz, and A. Rennings, "Study and realisation of dual-composite right/left-handed coplanar waveguide metamaterial in MMIC technology," IET Microwaves, Antennas and Propagation, Vol. 2, No. 7, 731-736, 2008.
doi:10.1049/iet-map:20070180

15. Edwards, T. C. and M. B. Steer, Foundations of Interconnect and Microstrip Design, 3rd edition, John Wiley and Sons Inc., 2000.

16. Pozar, D. M., Microwave Engineering, 3rd edition, John Wiley and Sons Inc., 2005.

17. Volakis, J. L., Antenna Engineering Handbook, 4th edition, McGraw-Hill Co., 2007.

18. Gevorgian, S., T. Martinsson, L. J. P. Linner, and E. L. Kollberg, "CAD models for multilayered substrate interdigital capacitors," IEEE Trans. on Microw. Theory and Tech., Vol. 44, No. 6, 896-904, Jun. 1996.
doi:10.1109/22.506449