Vol. 20
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-01
Near Field Focusing Effect and Hyperbolic Dispersion in Dielectric Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 20, 179-190, 2011
Abstract
This paper investigates the near field focusing behavior corresponding to the hyperbolic dispersion regime at the second band of the square lattice photonic crystal (PC). Numerical studies reveal the influence of the corner part negative refraction in the observed focusing effect, though the major part of the refraction is divergent at this hyperbolic regime. It is further observed that the investigated dispersion shows the surface mode behavior when the effective index of the PC slab is higher than the air medium. This aspect may be implemented for the excitation and transfer of near fields for an evanescent wave microscopy.
Citation
Natesan Yogesh, and Venkatachalam Subramanian, "Near Field Focusing Effect and Hyperbolic Dispersion in Dielectric Photonic Crystals," Progress In Electromagnetics Research M, Vol. 20, 179-190, 2011.
doi:10.2528/PIERM11070702
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Silin, R. A., "Possibility of creating plane-parallel lenses," Opt. Spectrosc., Vol. 44, 109, 1978.

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.

4. Ramakrishna, S. A. and T. M. Grezegorczyk, Physics and Applications of Negative Refractive Index Materials, 77-143, CRC Press, Boca Raton, 2009.

5. Cheng, Q., H.-F. Ma, and T.-J. Cui, "A complementary lens based on broadband metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 93-101, 2010.
doi:10.1163/156939310790322172

6. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd Edition, Princeton University Press, Princeton, New Jersey, 2008.

7. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, No. 7, 077405, 2003.

8. Smith, D. R., P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B, Vol. 21, No. 5, 1032-1043, 2004.
doi:10.1364/JOSAB.21.001032

9. Qiao, S., G. Zheng, H. Zhang, and L.-X. Ran, "Transition behavior of k-surface: From hyperbola to ellipse," Progress In Electromagnetics Research, Vol. 81, 267-277, 2008.
doi:10.2528/PIER08011104

10. Kong, F., B.-I. Wu, H. Hunag, J. Huangfu, S. Xi, and J. A. Kong, "Lateral displacement of an electromagnetic beam reflected from a grounded indefinite uniaxial slab," Progress In Electromagnetics Research, Vol. 82, 351-366, 2008.
doi:10.2528/PIER08032102

11. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, No. 16, 10696-10705, 2000.
doi:10.1103/PhysRevB.62.10696

12. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002.

13. Fang, Y. and T. Shen, "Diverse imaging of photonic crystal be the effects of channeling and partial band gap," Optik, Vol. 118, 100-102, 2007.
doi:10.1016/j.ijleo.2005.12.011

14. Sun, G. and A. G. Kirk, "Analyses of negative refraction in the partial bandgap of photonic crystals," Opt. Express, Vol. 16, No. 6, 4330-4336, 2008.
doi:10.1364/OE.16.004330

15. Tang, Z., R. Peng, Y. Ye, C. Zhao, D. Fan, H. Zhang, and S. Wen, "Optical properties of a square-lattice photonic crystal within the partial band gap," J. Opt. Am. A, Vol. 24, No. 2, 379-384, 2007.
doi:10.1364/JOSAA.24.000379

16. Minin, I. V., O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
doi:10.2528/PIERB08041501

17. Fang, Y.-T. and H.-J. Sun, "Imaging by photonic crystal using reflection and negative refraction," Chin. Phys. Lett., Vol. 22, No. 10, 2674-2676, 2005.
doi:10.1088/0256-307X/22/10/060

18. Li, Z.-Y. and L.-L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B, Vol. 68, 245110, 2003.

19. Feng, S., L. Ao, and Y.-Q. Wang, "Engineering the near-field imaging of a rectangular-lattice photonic-crystal slab in the second band," Science in China Series G: Physics, Mechanics and Astronomy, Vol. 52, No. 1, 87-91, 2009.
doi:10.1007/s11433-009-0022-4

20. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.

21. Wang, M.-Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602

22. Smith, D. R., D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett., Vol. 84, No. 13, 2244-2246, 2004.
doi:10.1063/1.1690471

23. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, Chichester, 1998. http://www.comsol.com..

24. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express, Vol. 8, No. 13, 173-190, 2001 http://ab-initio.mit.edu/mpb..
doi:10.1364/OE.8.000173

25. Reynolds, A. L., "Translight software,", The University of Glasgow, 2000. Email id: areynolds@elec.gla.ac.uk..

26. Qiu, M., F2P: Finite-difference Time-domain 2D Simulator for Photonic Devices, http://www.imit.kth.se/info/FOFU/PC/F2P..

27. Lu, Z., J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. and D. W. Prather Schneider, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett., Vol. 95, 153901, 2005.

28. Zhang, X., Z. Li, B. Cheng, and D.-Z. Zhang, "Non-near-field focus and imaging of an unpolarized electromagnetic wave through high-symmetry quasicrystals," Opt. Express, Vol. 15, No. 13, 1292-1300, 2007.
doi:10.1364/OE.15.001292

29. Entezar, S. R., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 171-182, 2009.
doi:10.1163/156939309787604427