Vol. 20
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-05
Diffraction Field Behavior Near the Edges of a Slot and Strip
By
Progress In Electromagnetics Research M, Vol. 20, 207-218, 2011
Abstract
The diffraction field asymptotics on the edges of a slot in the plane conducting screen and of a complementary strip is considered using the exact solutions of corresponding stationary diffraction problems, which have been derived before on the bases of the slot (strip) field expansions into discrete Fourier series. It is shown that as nearing the slot (strip) edges, the fields decrease or increase indefinitely in magnitude by the power law with an exponent of modulus less than unity, so the given exact diffraction solutions yield finite value of electromagnetic energy density in any point of space.
Citation
Vladimir Serdyuk, "Diffraction Field Behavior Near the Edges of a Slot and Strip," Progress In Electromagnetics Research M, Vol. 20, 207-218, 2011.
doi:10.2528/PIERM11062803
References

1. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

2. Born, M. and E. Wolf, Principles of Optics, Pergamon, Oxford, 1969.

3. Honl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer, Berlin, 1961 (in German)..

4. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon Press, Oxford, 1989.

5. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.

6. Meixner, J., "The behavior of electromagnetic FIelds at edges," IEEE Trans. Antennas and Propagat., Vol. 20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

7. Shevchenko, V. V., Continuous Transitions in Open Waveguides, Golem, Boulder, 1971.

8. Serdyuk, V. M., "Exact solutions for electromagnetic wave diffraction by a slot and strip," Int. J. Electron. Commun. (AEU), Vol. 65, No. 3, 182-189, 2011.
doi:10.1016/j.aeue.2010.04.002

9. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of electromagnetic plane wave by an impedance strip," Progress In Electromagnetics Research, Vol. 75, 303-318, 2007.
doi:10.2528/PIER07053104

10. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction from a slit in an impedance plane placed at the interface of two semi-infinite half spaces of different media," Progress In Electromagnetics Research B, Vol. 10, 191-209, 2008.
doi:10.2528/PIERB08100802

11. Naveed, M., Q. A. Naqvi, and K. Hongo, "Diffraction of EM plane wave by a slit in an impedance plane using Malyuzhinets function," Progress In Electromagnetics Research B, Vol. 5, 265-273, 2008.
doi:10.2528/PIERB08021402

12. Ayub, M., A. B. Mann, M. Ramzan, and M. H. Tiwana, "Diffraction of plane waves by a slit in an infinite soft-hard plane," Progress In Electromagnetics Research B, Vol. 11, 103-131, 2009.
doi:10.2528/PIERB08101803

13. Machac, J., V. Kotlan, and M. Snajdr, "Modes on a conductor-backed slotline," Progress In Electromagnetics Research B, Vol. 9, 151-164, 2008.
doi:10.2528/PIERB08052804

14. Sommerfeld, A., "Mathematische theorie der diffraktion," Mathematische Annalen, Vol. 47, No. 1, 317-374, 1896 (in German)..

15. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Golem, Boulder, 1969.

16. Hamming, R. W., Numerical Methods for Scientists and Engineers, Mc Graw-Hill, New York, 1962.

17. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1964.

18. Prudnikov, A. P., Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Elementary Functions, Vol. 1, Gordon and Breach, New York, 1986.