Vol. 119
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-08-05
Investigation of Low-Grazing-Angle Microwave Backscattering from Threedimensional Breaking Sea Waves
By
Progress In Electromagnetics Research, Vol. 119, 279-298, 2011
Abstract
The microwave backscattering of the sea surface is investigated with the wedge-shaped breaking waves for the super events at low grazing angles (LGA). According to the relationship between the wave breaking and the whitecap, the finite three-dimensional wedges are utilized to approximately model the breaking waves, of which the spatial distribution is simulated with whitecap coverage. The phase-modified two-scale method (TSM) and method of equivalent currents (MEC) are used to calculate the surface and volume scattering of sea surface and breaking waves respectively. The sea spikes in LGA are observed by this model, and the strong directionality is caused by the breakers. Considering the Bragg phase velocity, orbital motion of facets and wind drift, the Doppler spectrum is simulated with the time series of sea clutter. Included the breaking waves, the scattering model indicates that the enhanced non-Bragg scattering leads to the extended Doppler spectrum width. The numerical results agree with the measured data well at LGA. Compared with the statistical models, the complex physical mechanism of the sea scattering is explicitly described in this paper.
Citation
Wei Luo, Min Zhang, Chao Wang, and Hong-Cheng Yin, "Investigation of Low-Grazing-Angle Microwave Backscattering from Threedimensional Breaking Sea Waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607
References

1. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

2. Luo, W., M. Zhang, Y. W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103

3. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Application, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

4. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

5. Chen, K.-S., L. Tsang, and J.-C. Shi, "Microwave emission from two-dimensional inhomogeneous dielectric rough surfaces based on physics-based two-grid method ," Progress In Electromagnetics Research, Vol. 67, 181-203, 2007.
doi:10.2528/PIER06082903

6. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIER09091705

7. Brelet, Y. and C. Bourlier, "SPM numerical results from an effective surface impedance for a one-dimensional perfectly-conducting rough sea surface," Progress In Electromagnetics Research, Vol. 81, 413-436, 2008.
doi:10.2528/PIER07121703

8. Ishimaru, A., C. Le, Y. Kuga, L. A. Sengers, T. K. Chan, and , "Polarimetric scattering theory for high slope rough surface," Progress In Electromagnetics Research, Vol. 14, 1-36, 1996.

9. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modeling above Gaussian rough surfaces by the parabolic shadowing effect ," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.
doi:10.2528/PIER05090101

10. Xu, P., K.-S. Chen, and L. Tsang, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
doi:10.2528/PIER10072703

11. Chen, H., M. Zhang, D. Nie, and H.-C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508

12. Oraizi, H. and S. Hosseinzadeh, "A novel marching algorithm for radio wave propagation modeling over rough surfaces," Progress In Electromagnetics Research, Vol. 57, 85-100, 2006.
doi:10.2528/PIER05051001

13. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

14. Lewis, B. L. and I. D. Olin, "Experimental study and theoretical model of high-resolution radar backscatter from the sea," Radio Sci., Vol. 15, 815-828, 1980.
doi:10.1029/RS015i004p00815

15. Fuchs, J., D. Regas, T. Waseda, S. Welch, and M. P. Tulin, "Correlation of hydrodynamic features with LGA radar backscatter from breaking waves," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2442-2460, 1999.
doi:10.1109/36.789641

16. Lee, P. H. Y., et al. "X band microwave backscattering from ocean waves," J. Geophys. Res., Vol. 100, No. 2, 2591-2611, 1995.
doi:10.1029/94JC02741

17. Jessup, A. T., W. K. Melville, and W. C. Keller, "Breaking waves a®ecting microwave backscatter 1. detection and verification," J. Geophys. Res., Vol. 96, No. C11, 20547-20559.
doi:10.1029/91JC01993

18. Lee, P. H. Y, et al. "Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 333-340, 1996.
doi:10.1109/8.486302

19. Walker, D., "Doppler modelling of radar sea clutter," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 148, No. 2, 73-80, 2001.
doi:10.1049/ip-rsn:20010182

20. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 3, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318

21. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 2, 523-526, 2002.
doi:10.1109/36.992830

22. Zhao, Z. Q. and J. C. West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 2, 286-294, 2005.
doi:10.1109/TGRS.2004.840644

23. Kudryavtsev, V., D. Hauser, G. Caudal, and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface 1.Background model," J. Geophys. Res., Vol. 108, No. C3, 8054, 2003.
doi:10.1029/2001JC001003

24. Kalmykov, A. I. and V. V. Pustovoytenko, "On polarization features of radio signals scattered from the sea surface at small grazing angles," J. Geophys. Res., Vol. 81, No. 12, 1960-1964, 1976.
doi:10.1029/JC081i012p01960

25. Kwoh, D. S. W. and B. M. Lake, "A deterministic, coherent and dual-polarized laboratory study of microwave backscattering from water waves, part I: Short gravity waves without wind," IEEE Journal of Oceanic Engineering, Vol. 9, No. 5, 291-308, 1984.
doi:10.1109/JOE.1984.1145638

26. Lyzenga, D. R., A. L. Maffett, and R. A. Shuchman, "The contribution of wedge scattering to the radar cross section of the ocean surface," IEEE Trans. Geosci. Remote Sens., Vol. GE-21, No. 4, 502-505, 1983.
doi:10.1109/TGRS.1983.350513

27. Ericson, E. A. and D. R. Lyzenga, "Performance of a numerical iterative solution of the surface current integral equation for surfaces containing small radii of curvature," Radio Sci., Vol. 33, No. 2, 205-217, 1998.
doi:10.1029/97RS03783

28. Lyzenga, D. R. and E. A. Ericson, "Numerical calculations of radar scattering from sharply peaked ocean waves," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 2, 636-646, 1998.
doi:10.1109/36.662744

29. Hasselmann, D. E., "Directional wave spectra observed during JONSWAP 1973," J. Phys. Oceanogr., Vol. 10, No. 7, 1264-1280, 1980.
doi:10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2

30. Lee, P. H. Y., et al. "Scattering from breaking gravity waves without wind," IEEE Trans. Antennas Propagat., Vol. 46, No. 1, 14-26, 1998.
doi:10.1109/8.655447

31. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM ," Int. J. Numer. Meth. Fluids, Vol. 20, 1315-1336, 1995.
doi:10.1002/fld.1650201203

32. Xu, D., X. Liu, and D. Yu, "Probability of wave breaking and whitecap coverage in a fetch-limited sea," J. Geophys. Res., Vol. 105, No. C6, 14253-14259, 2000.
doi:10.1029/2000JC900040

33. Monahan, E. C. and I. Ó Muircheartaigh, "Optimal power-law description of oceanic whitecap coverage dependence on wind speed," J. Phys. Oceanogr., Vol. 10, No. 12, 2094-2099, 1980.
doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2

34. Fung, A. K. and K. K. Lee, "A semi-empirical sea-spectrum model for scattering coefficient estimation," IEEE Journal of Oceanic Engineering, Vol. 7, 166-176, 1982.
doi:10.1109/JOE.1982.1145535

35. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

36. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/MEC-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

37. Ando, M., T. Murasaki, and T. Kinoshita, "Elimination of false singularities in GTD equivalent edge currents," IEE Proceedings H Microwaves, Antennas and Propagation, Vol. 138, 289-296, 1991.
doi:10.1049/ip-h-2.1991.0049

38. Walker, D., "Experimentally motivated model for low grazing angle radar doppler spectra of the sea surface," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 147, 114-120, 2000.
doi:10.1049/ip-rsn:20000386

39. Toporkov, J. V. and G. S. Brown, "Numerical simulations of scattering from time-varying, randomly rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1616-1625, 2000.
doi:10.1109/36.851961

40. Plant, W. J., "Microwave sea return at moderate to high incidence angles," Waves in Random and Complex Media, Vol. 13, No. 4, 339-354, 2003.

41. Hwang, P. A., M. A. Sletten, and J. V. Toporkov, "Breaking wave contribution to low grazing angle radar backscatter from the ocean surface," J. Geophys. Res., Vol. 113, No. C09017, 1-12, 2008.

42. Smith, T. L., T. Waseda, and C.-K. Rheem, "Measurements of the doppler spectra of breaking waves," IET Radar Sonar Navig., Vol. 1, No. 2, 149-157, 2007.
doi:10.1049/iet-rsn:20060109