Vol. 35
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-10-07
Design and Implementation of a Planar 4x4 Butler Matrix in SIW Technology for Wide Band High Power Applications
By
Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011
Abstract
This paper introduces a novel design of Butler matrix in substrate integrated waveguide (SIW) technology with wide frequency band characteristics. Butler matrices are particularly useful in advanced antenna design and characteristics such as wideband operation, power handling, manufacturing, integration, cost, etc. are typical issues to be addressed in many applications. The proposed planar 4×4 Butler matrix provides an interesting solution to most of these issues. Wideband operation is achieved thanks to improved cross-couplers. These components are also characterized by higher power handling when compared to $E$-plane couplers. The use of SIW technology enables to reduce insertion losses compared to other printed technologies, while maintaining most advantages of such technologies such as high integration, manufacturing simplicity, low weight, etc. The proposed design is fully described, from the elementary building blocks to the full assembly performances. The design is optimized for operation in Ku-band with a center frequency at 12.5 GHz. A prototype of the 4×4 Butler matrix is manufactured, and good performances are confirmed over 24% relative frequency bandwidth. Potential use of this sub-system in multibeam antenna design is also discussed.
Citation
Tarek Djerafi, Nelson J. G. Fonseca, and Ke Wu, "Design and Implementation of a Planar 4x4 Butler Matrix in SIW Technology for Wide Band High Power Applications," Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011.
doi:10.2528/PIERB11062004
References

1. El Zooghby, A., "Potentials of smart antennas in CDMA systems and uplink improvements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 172-177, Oct. 2001.

2. Godara, L. C., "Application of antenna arrays to mobile communications. Part II: Beam-forming and direction-of-arrival considerations," Proceedings of the IEEE, Vol. 85, No. 8, 1195-1245, Aug. 1997.
doi:10.1109/5.622504

3. Cladwell, F., J. S. Kenney, and I. A. Ingram, "Design and implementation of a switched-beam smart antenna for an 802.11b wireless access point," Radio and Wireless Conference (RAWCON 2002), 55-58, 2002.
doi:10.1109/RAWCON.2002.1030116

4. Polegre, A. M., G. Caille, L. Boyer, and A. Roederer, "Semi-active conformal array for ESA's GAIA mission," IEEE AP-S International Symposium, Vol. 4, 4108-4111, Jun. 2004.

5. Egami, S. and M. Kawai, "An adaptive multiple beam system concept," IEEE Journal on Selected Areas in Communications, Vol. 5, No. 4, 630-636, May 1987.
doi:10.1109/JSAC.1987.1146577

6. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, Nov. 1963.
doi:10.1109/TAP.1963.1138114

7. Shelton, J. P., "Focusing characteristics of symmetrically configured bootlace lenses," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 4, 513-518, Jul. 1978.
doi:10.1109/TAP.1978.1141883

8. Herd, J. S. and D. M. Pozar, "Design of a microstrip antenna array fed by a Rotman lens," IEEE AP-S International Symposium, Vol. 22, 729-732, Jun. 1984.

9. Hall, P. S. and S. J. Vetterlein, "Review of radio frequency beam-forming techniques for scanned and multiple beam antennas," Proceedings of the IEEE, Vol. 137, No. 5, 293-303, Oct. 1990.

10. Blass, J., "Multidirectional antenna, a new approach to stacked beams," IRE International Conference Record, Vol. 8, 48-50, Part 1, Mar. 1960.

11. Allen, J. L., "A theoretical limitation on the formation of lossless multiple beams in linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 9, No. 7, 350-352, Jul. 1961.

12. White, W. D., "Pattern limitations in multiple-beam antennas," IRE Transactions on Antennas and Propagation, Vol. 10, No. 4, 430-436, Jul. 1962.
doi:10.1109/TAP.1962.1137890

13. Butler, J. and R. Lowe, "Beam forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 1962.

14. Moody, H. J., "The systematic design of the Butler matrix," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 6, 786-788, Nov. 1964.
doi:10.1109/TAP.1964.1138319

15. He, J., B.-Z. Wang, Q.-Q. He, Y.-X. Xing, and Z.-L. Yin, "Wideband X-band microstrip Butler matrix," Progress In Electromagnetics Research, Vol. 74, 131-140, 2007.
doi:10.2528/PIER07042302

16. Accatino, L., F. Muoio, B. Piovano, G. Caille, and M. Mongiardo, "CAD of waveguide Butler matrices including mechanical and thermal constraints," 31st European Microwave Conference (EuMC 2001), 1-4, Sep. 2001.
doi:10.1109/EUMA.2001.338911

17. Koubeissi, M., C. Decroze, T. Monediere, and B. Jecko, "A new method to design a Butler matrix with broadside beam: Application to a multibeam antenna," Microwave and Optical Technology Letters, Vol. 48, No. 1, 35-40, Jan. 2006.
doi:10.1002/mop.21253

18. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Guided Wave Letters, Vol. 11, No. 2, 68-70, 2001.

19. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- A new concept for high-frequency electronics and optoelectronics," TELSIKS'03, Vol. 1, 3-10, Nis, Yugoslavia, Oct. 2003.

20. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. Raja Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802

21. Shen, W., X.-W. Sun, W.-Y. Yin, J.-F. Mao, and Q.-F. Wei, "A novel single-cavity dual mode substrate integrated waveguide filter with non resonating node," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 6, 368-370, Jun. 2009.
doi:10.1109/LMWC.2009.2020017

22. Henry, M., C. E. Free, B. S. Izqueirdo, J. C. Batchelor, and P. Young, "Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis," IEEE Transactions on Advanced Packaging, Vol. 32, No. 1, 93-100, Feb. 2009.
doi:10.1109/TADVP.2008.2011284

23. Cassivi, Y., D. Deslandes, and K. Wu, "Substrate integrated waveguide directional couplers," Asia-Pacific Microwave Conference, Vol. 3, 1409-1412, 2002.

24. Hao, Z. C., W. Hong, J. X. Chen, H. X. Zhou, and K.Wu, "Single-layer substrate integrated waveguide directional couplers," IEE Proceedings --- Microwave, Antennas and Propagation, Vol. 153, No. 5, 426-431, Oct. 2006.
doi:10.1049/ip-map:20050171

25. Djerafi, T. and K. Wu, "Super-compact substrate integrated waveguide cruciform directional coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 11, 757-759, Nov. 2007.
doi:10.1109/LMWC.2007.908040

26. Djerafi, T., J. Gauthier, and K. Wu, "Quasi-optical cruciform substrate integrated waveguide (SIW) coupler for millimeter-wave systems," IEEE MTT-S International Microwave Symposium Digest (MTT), 716-719, 2010.

27. Labay, V. A. and J. Bornemann, "E-plane directional couplers in substrate-integrated waveguide technology," Asia-Pacific Microwave Conference, 1-3, 2008.
doi:10.1109/APMC.2008.4957920

28. Ali, A., H. Aubert, N. J. G. Fonseca, and F. Coccetti, "Wideband two-layer SIW coupler: Design and experiment," IET Electronics Letters, Vol. 45, No. 13, 687-689, Jun. 2009.
doi:10.1049/el.2009.0464

29. Yamamoto, S., J. Hirokawa, and M. Ando, "A beam switching slot array with a 4-way Butler matrix installed in single layer post-wall waveguide," IEICE Transactions on Communications, Vol. E86-B, No. 5, 1653-1659, May 2003.

30. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Architecture and implementation of planar 4 × 4 Ku-band Nolen matrix using SIW technology," Asia-Pacific Microwave Conference, 16-20, Dec. 2008.

31. Sbarra, E., L. Marcaccioli, R. V. Gatti, and R. Sorrentino, "A novel Rotman lens in SIW technology," European Radar Conference, 236-239, 2007.
doi:10.1109/EURAD.2007.4404980

32. Ali, A., N. Fonseca, F. Coccetti, and H. Aubert, "Novel two-layer broadband 4 × 4 Butler matrix in SIW technology for Ku band applications," Asia-Pacific Microwave Conference, 1-4, Dec. 2008.
doi:10.1109/APMC.2008.4958211

33. European Cooperation for Space Standardization (ECSS) "Space engineering --- Multipaction design and test,", Vol. ECSS-E-20-01A, May 5, 2003.

34. Wolk, D., C. Vicente, H. L. Hartnagel, M. Mattes, J. R. Mosig, and D. Raboso, "An investigation of the effect of fringing fields on multipactor breakdown," Workshop on Multipactor, RF and DC Corona and Passive Intermodulation in Space RF Hardware, 93-99, Sep. 2005.

35. Cheng, Y. J., K. Wu, and W. Hong, "Power handling capability of substrate integrated waveguide interconnects and related transmission line systems," Transactions on Advanced Packaging, Vol. 31, No. 4, 900-909, 2008.
doi:10.1109/TADVP.2008.927814

36. Wight, J. S., W. J. Chudobiak, and V. Makios, "A microstrip and stripline crossover structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 24, No. 5, 270, 1976.
doi:10.1109/TMTT.1976.1128838