Vol. 19
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-07-29
A Rescue Radar System for the Detection of Victims Trapped Under Rubble Based on the Independent Component Analysis Algorithm
By
Progress In Electromagnetics Research M, Vol. 19, 173-181, 2011
Abstract
This work presents a light-weight microwave system for the search and rescue of victims trapped under the rubble of collapsed building during an earthquake or other disasters. The proposed system based on a continuous wave X-band radar is able to detect respiratory and heart fluctuations: the information is extracted from the backscattered electromagnetic field exploiting independent component analysis (ICA) algorithm which provides an efficient noise and clutter cleaning. The proposed rescue radar is compact enough to be mounted onboard of a small unmanned aerial vehicle (UAV) in order to reach inaccessible or dangerous areas. The obtained experimental results show that the proposed detection method is able to successfully locate trapped victims with a reasonable degree of accuracy.
Citation
Massimo Donelli, "A Rescue Radar System for the Detection of Victims Trapped Under Rubble Based on the Independent Component Analysis Algorithm," Progress In Electromagnetics Research M, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206
References

1. Bell Hadj Tahar, J., J. C. Bolomey, and M. Cauterman, "Microwave life detector for buried victims," Proc. 23rd European Microwave Conference, 509-514, Madrid, Spain, Sep. 6-12, 1993.

2. Akiyama, I., N. Yoshizumi, A. Ohya, Y. Aoki, and F. Matsuno, "Search for survivors buried in rubble by rescue radar with array antennas - Extraction of respiratory fluctuation," IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2007, 1-6, 2007.
doi:10.1109/SSRR.2007.4381292

3. Loschonsky, M., C. Feige, O. Rogall, S. Fisun, and L. M. Reindl, "Detection technology for trapped and buried people," IEEE MTT-S International Microwave Workshop Wireless Sensing, Local Positioning, and RFID, 2009, IMWS 2009, 1-6, 2009.
doi:10.1109/IMWS2.2009.5307879

4. Arai, I., "Survivor search radar system for persons trapped under earthquake rubble," 2001 Asia-Pacific Microwave Conference, 2001, APMC 2001, 663-668, 2001.

5. Wang, Q., Y. Li, T. Wu, C. Foxm, Q. Fang, et al. "Life signal extraction in through the wall surveillance," Proceeding IEEE International Conference on Engineering Biomedical and Biological Society, ICBPE'09, 1343-1346, 2009.

6. Chen, K. M., D. Misra, H. Wang, H. R. Chuang, and E. Postow, "An X-band microwave life-detection system," IEEE Trans. Biomed. Eng., Vol. 57, No. 6, 607-702, 1986.

7. Baboli, M., A. Sharafi, and E. Fear, "A framework for simulation of UWB system for heart rate detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 1200-1209, 2009.

8. Wu, C. W. and Z. Y. Huang, "Using the phase change of a reflected microwave to detect a human subject behind a barrier," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 267-2272, 2008.
doi:10.1109/TBME.2007.910680

9. Donelli, M. and D. Franceschini, "Experiment with a modulated scattering system for through the wall identification," IEEE Antennas and Wireless Propagation Letters, 20-23, 2010.
doi:10.1109/LAWP.2010.2041026

10. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remote Sensing, Vol. 46, No. 6, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

11. Zhang, W. and A. Hoorfar, "Two-dimensional diffraction tomographic algorithm for through-the-wall radar imaging," Progress In Electromagnetics Research B, Vol. 31, 205-218, 2011.

12. Lee, T. W., Indipendent Component Analysis: Theory and Applications, Kluwer Academic Publishers, 1999.

13. Molgedey, L. and H. G. Schuster, "Separation of a mixture of independent signals using time delayed correlations," Physical Review Letters, 3634-3637, 1994.
doi:10.1103/PhysRevLett.72.3634

14. McKeown, M. J., S. Makeig, C. G. Brown, T. P. Jung, S. S. Kindermann, and T. J. Sejnowski, "Spatially independent activity patterns in functional magnetic resonance imaging data during the stroop color-naming task," Proceedings National Academy of Sciences of the United States of America, 803-810, Feb. 1995.

15. Bell, A. J., T. P. Jung, and T. J. Sejonowski, "Independent component analysis of electroencephalographic data," Advances in Neural Information Processing Systems, Vol. 1, 145-151, 1996.