Vol. 19
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-07-26
A New Approach to Enhance Incidence Angle Based Spectrum Tuning Capability of One-Dimensional Ternary Photonic Band Gap Structure
By
Progress In Electromagnetics Research M, Vol. 19, 161-171, 2011
Abstract
This paper demonstrates a novel and superior approach to enhance the incident angle based spectrum tuning capability of 1D ternary Photonic Band Gap (PBG) structure. The incidence angle sensitive wavelength band shift of a ternary periodic structure was significantly enhanced when the refractive index of sandwiched layers in each period was changed to 1.5 from 2.04. The ranges of enhancements for TE and TM wavelength band shifts were 0.5-1.5 nm and 5.5-20.5 nm respectively at different angles of incidence of light on the structure. Unlike previous approach, this approach not only enhances the incidence angle based spectrum tuning capability of 1D ternary PBG structure, but, it also ensures that the size of structure does not increase and temperature immunity of the structure does not decrease to enhance spectrum tuning capability.
Citation
Anirudh Banerjee, "A New Approach to Enhance Incidence Angle Based Spectrum Tuning Capability of One-Dimensional Ternary Photonic Band Gap Structure," Progress In Electromagnetics Research M, Vol. 19, 161-171, 2011.
doi:10.2528/PIERM11060903
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Physical Review Letters, Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Yablonovitch, E., "Photonic band gap structures," Journal of the Optical Society of America B, Vol. 10, 283-295, 1993.
doi:10.1364/JOSAB.10.000283

3. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, New Jersey, 2008.

4. Banerjee, A., "Spectrum engineering with 1D photonic crystals," Photonic Crystals: Band Structure and Applications, Nova Science Publishers, Hauppauge, New York, 2010.

5. Rumyantsev, V. V. and S. A. Fedorov, "Propagation of light in layered composites with variable thickness of the layers," Technical Physics, Vol. 53, 727-731, 2008.
doi:10.1134/S1063784208060091

6. Rumyantsev, V. V. and S. A. Fedorov, "Propagation of light in a quasi-two-dimensional Si/SiO2 superlattice with variable layer thickness," Optics and Spectroscopy, Vol. 106, 627-631, 2009.
doi:10.1134/S0030400X09040250

7. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643

8. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365

9. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

10. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using one-dimensional ternary photonic band gap material," Progress In Electromagnetic Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

11. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one- dimensional ternary photonic bandgap material," Journal of the Optical Society of America B, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566

12. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetic Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

13. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101

14. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

15. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1023-1032, 2010.
doi:10.1163/156939310791586151

16. Born, M. and E.Wolf, "Basic properties of electromagnetic fields," Principles of Optics, 58-69, Cambridge University Press, U.K., 1980.

17. Vandenbem, C., J. M. Vigoureux, and J. P. Vigenron, "Tunable band structures in uniaxial multilayer stacks," Journal of Optical Society of America B, Vol. 23, 2366-2376, 2006.
doi:10.1364/JOSAB.23.002366