Vol. 19
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-07-12
Acceleration Technique of FDTD Model with High Accuracy for Nanostructure Photonics
By
Progress In Electromagnetics Research M, Vol. 19, 105-120, 2011
Abstract
To accurately model nanophotonic structures, a conformal dispersive finite difference time domain (FDTD) method based on an effective permittivity technique is presented, which can describe exactly the behaviors of evanescent waves in the vicinity of curved interface. A mismatch between the numerical permittivity and the analytical value introduced by the discretization in FDTD is demonstrated, thus, very fine time-step size is always necessary for nanostructures modelling, which greatly increases the required overheads of CPU time as compared to usual FDTD simulations. To resolve this problem, the performance of parallel FDTD code is investigated on a Gigabit Ethernet, and the acceleration technique for parallel FDTD algorithm is presented, which is developed by means of the replicating computation based on overlapping grids, the OpenMP multithreading technique and the vectorization based on SSE instruction. The comparison of relevant numerical results shows that these methods are able to reduce the expense of the system communications and enhance the utilization ratio of the CPU effectively, which improves greatly the performance of parallel FDTD with high time-consuming.
Citation
Yu Liu, Chun Chong Chen, Pei Wang, and Hai Ming, "Acceleration Technique of FDTD Model with High Accuracy for Nanostructure Photonics," Progress In Electromagnetics Research M, Vol. 19, 105-120, 2011.
doi:10.2528/PIERM11060607
References

1. Andrew, T. L., H.-Y. Tsai, and R. Menon, "Confining light to deep subwavelength dimensions to enable optical nanopatterning," Science, Vol. 324, 917-921, 2009.
doi:10.1126/science.1167704

2. Suyama, T. and Y. Okuno, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914

3. Politano, A., R. G. Agostino, E. Colavita, et al. "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079

4. Politano, A., R. G. Agostino, E. Colavita, et al. "High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): Dependence of water reactivity as a function of Na coverage," The Journal of Chemical Physics, Vol. 126, 244712, 2007.

5. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for periodic targets: theory and tests," Journal of Optical Society of America A, Vol. 25, No. 11, 2693-2703, 2008.
doi:10.1364/JOSAA.25.002693

6. Jiao, D. and J. M. Jin, "Time-domain finite-element modeling of dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 5, 220-222, 2001.
doi:10.1109/7260.923034

7. Liu, Y., Z. Liang, and Z. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm com- bined with interpolation technique," Progress In Electromagnetics Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603

8. Garcia, S. G., F. Costen, M. Fernandez Pantoja, L. D. Angulo, and J. Alvarez, "Effcient excitation of waveguides in Crank-Nicolson FDTD," Progress In Electromagnetics Research Letters, Vol. 17, 27-38, 2010.
doi:10.2528/PIERL10072008

9. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

10. Mohammadi, A. and M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Optics Express, Vol. 14, No. 23, 11330-11338, 2006.
doi:10.1364/OE.14.011330

11. Wang, A.-Q., L.-X. Guo, and C. Chai, "Numerical simulations of electromagnetic scattering from 2D rough surface: Geometric modeling by nurbs surface," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1315-1328, 2010.
doi:10.1163/156939310791958662

12. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306

13. Hirono, T., ni, and T. Yamanaka., "Effective permittivities with exact second-order accuracy at inclined dielectric interface for the two-dimensional finite-difference time-domain method," Applied Optics, Vol. 49, No. 7, 1080-1096, 2010.
doi:10.1364/AO.49.001080

14. Hwang, K.-P. and A. C. Cangellaris, "Effective permittivities for second-order accurate FDTD equations at dielectric interfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 4, 158-160, 2001.
doi:10.1109/7260.916329

15. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, No. 25, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367

16. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3nd Edition, Artech House, Norwood, MA, 2005.

17. Zhao, Y., P. Belov, and Y. Hao, "Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries," Journal of Optics A: Pure and Applied Optics, Vol. 9, S468-S475, 2007.
doi:10.1088/1464-4258/9/9/S31

18. Chen, J. J., T. M. Grzegorczyk, B.-I. Wu, and J. A. Kong, "Limitation of FDTD in simulation of a perfect lens imaging system," Optics Express, Vol. 13, No. 26, 10840-10845, 2005.
doi:10.1364/OPEX.13.010840

19. Liu, Y., Z. Liang, and Z. Q. Yang, "A novel FDTD approach featuring two-level parallelization on PC cluster," Progress In Electromagnetics Research, Vol. 80, 393-408, 2008.
doi:10.2528/PIER07120703

20. Teixeira, F. L., "Time-domain finite-difference and finite-element methods for Maxwell equations in complex media," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2150-2166, 2008.
doi:10.1109/TAP.2008.926767

21. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Physical Review B, Vol. 62, No. 24, R16356-R16359, 2000.
doi:10.1103/PhysRevB.62.R16356

22. Bik, A., M. Girkar, P. Grey and X.-M. Tian, "Effcient exploitation of parallelism on Pentium III and Pentium 4 processor-based systems," Intel Technology Journal, Q1, 1-9, 2001.