Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-05
A Slow Light Fishnet-Like Absorber in the Millimeter-Wave Range
By
Progress In Electromagnetics Research, Vol. 118, 287-301, 2011
Abstract
A novel route to achieve a narrowband free-space electromagnetic absorber in any range of the spectrum based on stacked subwavelength hole arrays is proposed. The absorption is obtained by means of a slow light mode inside a fishnet-like engineered structure and exploiting the unavoidable misalignments and bucklings of the free-standing stack. An incoming pulse becomes permanently trapped in the structure due to the near zero group velocity which causes an enhancement of the radiation-structure interaction that leads to a huge increment of losses arising from the finite conductivity of the metal as well as arrangement tolerances. This approach is studied not only by simulation but also experimentally under normal incidence at millimeter wavelengths. Moreover, a basic grasp about the angular dependence of the structure is given by analyzing the 2D dispersion diagram. It shows that this scheme may also display high absorption under oblique incidence for s-polarization (or TE-polarization), whereas $p$-polarization (TM-polarization) would degrade its performance.
Citation
Miguel Navarro-Cia, Victor Torres Landivar, Miguel Beruete, and Mario Sorolla Ayza, "A Slow Light Fishnet-Like Absorber in the Millimeter-Wave Range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105
References

1. Hau, Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas ," Nature, Vol. 397, No. 6720, 594-598, 1999.
doi:10.1038/17561

2. Krauss, T. F., "Why do we need slow light?," Nature Photon., Vol. 2, No. 8, 448-450, 2008.
doi:10.1038/nphoton.2008.139

3. Tsakmakidis, K. L., A. D. Boardman, and O. Hess, "Trapped rainbow' storage of light in metamaterials," Nature, Vol. 450, No. 7168, 397-401, 2007.
doi:10.1038/nature06285

4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7-8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

5. Bouwkamp, C. J., "On the diffraction of electromagnetic waves by circular disks and apertures," Philips Res. Rep., Vol. 5, No. 6, 401-422, 1950.

6. Lewis, A., M. Isaacson, A. Harrontunian, and A. Muray, "Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy, Vol. 13, No. 3, 227-231, 1984.
doi:10.1016/0304-3991(84)90201-8

7. Ebbesen, T. W., H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays ," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570

8. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett., Vol. 29, No. 21, 2500-2502, 2004.
doi:10.1364/OL.29.002500

9. Beruete, M., M. Sorolla, I. Campillo, and J. S. Dolado, "Increase of the transmission in cut-off metallic hole arrays," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 2, 116-118, 2005.
doi:10.1109/LMWC.2004.842852

10. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 1897-1903, 2005.
doi:10.1109/TAP.2005.848689

11. Lomakin, V. and E. Michielssen, "Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 970-984, 2006.
doi:10.1109/TAP.2006.869896

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

14. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

15. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

16. Terracher, F. and G. Berginc, "A broadband dielectric microwave absorber with periodic metallization," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1725-1741, 1999.
doi:10.1163/156939399X00187

17. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE Antennas Propag. Soc. (AP-S) Int. Symp. USNC/URSI Natl. Radio Sci. Mtg., Vol. 2, 392-395, San Antonio, 2002.

18. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett., Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891

19. Kisel, V. N. and A. N. Lagarkov, "Near-perfect absorption by a flat metamaterial plate," Phys. Rev. E, Vol. 76, No. 6, 065601-1-065601-4, 2007.
doi:10.1103/PhysRevE.76.065601

20. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 1998.

21. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-1-207402-4, 2008.
doi:10.1103/PhysRevLett.100.207402

22. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181

23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett., Vol. 95, No. 4, 041106-1-041106-4, 2009.
doi:10.1063/1.3184594

24. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidi-rectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, No. 6, 063006-1-063006-1, 2010.
doi:10.1088/1367-2630/12/6/063006

25. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays ," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
doi:10.1364/OE.14.005445

26. Navarro-Cía, M., M. Beruete, M. Sorolla, and I. Campillo, "Negative refraction in a prism made of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 2, 560-566, 2008.
doi:10.1364/OE.16.000560

27. Beruete, M., M. Navarro-Cía, F. Falcone, I. Campillo, and M. Sorolla, "Single negative birefringence in stacked spoof plasmon metasurfaces by prism experiment," Opt. Lett., Vol. 35, No. 5, 643-645, 2010.
doi:10.1364/OL.35.000643

28. Navarro-Cía, M., M. Beruete, F. J. Falcone, M. Sorolla Ayza, and I. Campillo, "Polarization-tunable negative or positive refraction in self-complementariness-based extraordinary transmission prism," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108

29. Beruete, M., I. Campillo, M. Navarro-Cía, F. Falcone, and M. Sorolla Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1514-1521, 2007.
doi:10.1109/TAP.2007.897324

30. Figotin, A. and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E, Vol. 63, No. 6, 066609-1-066609-7, 2001.
doi:10.1103/PhysRevE.63.066609

31. Figotin, A. and I. Vitebsky, "Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers," Phys. Rev. E, Vol. 72, No. 3, 036619-1-036619-12, 2005.
doi:10.1103/PhysRevE.72.036619

32. Yarga, S., K. Sertel, and J. L. Volakis, "Degenerate band edge crystals for directive antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 119-126, 2008.
doi:10.1109/TAP.2007.912955

33. Mumcu, G., K. Sertel, and J. L. Volakis, "Miniature antennas and arrays embedded within magnetic photonic crystals," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 168-171, 2006.
doi:10.1109/LAWP.2006.873949

34. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mat., Vol. 9, No. 3, 205-213, 2010.
doi:10.1038/nmat2629

35. Beruete, M., Millimeter-wave extraordinary transmission: Connection to metamaterials and technological applications, Ph.D. Thesis, 2006.

36. Engelen, R. J. P., D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Lett., Vol. 101, No. 10, 103901-1-103901-4, 2008.
doi:10.1103/PhysRevLett.101.103901

37. Beruete, M., I. Campillo, J. E. Rodríguez-Seco, E. Perea, M. Navarro-Cía, I. J. Núñez-Manrique, and M. Sorolla, "Enhanced gain by double-periodic stacked subwavelength hole array," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 12, 831-833, 2007.
doi:10.1109/LMWC.2007.910470

38. Yeh, P., "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Amer., Vol. 69, No. 5, 742-756, 1979.
doi:10.1364/JOSA.69.000742

39. Mary, A., S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett., Vol. 101, No. 10, 103902-1-103902-4, 2008.
doi:10.1103/PhysRevLett.101.103902

40. Beruete, M., M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B, Vol. 79, No. 19, 195107-1-195107-, 2009.
doi:10.1103/PhysRevB.79.195107

41. Beruete, M., M. Navarro-Cía, and M. Sorolla, "Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial ," New J. Phys., Vol. 12, No. 6, 063037-1-063037-15, 2010.
doi:10.1088/1367-2630/12/6/063037

42. Beruete, M., M. Navarro-Cía, and M. Sorolla, "High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy," Photon Nanostruct: Fundam Appl., 200, doi: 10.1016/j.photonics.2011.04.009.