Vol. 32
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-18
Low-Leakage with Attenuated Material Loss Hybrid Coaxial Cable
By
Progress In Electromagnetics Research B, Vol. 32, 243-262, 2011
Abstract
We investigate a new mean of decreasing leakage and material loss from coaxial cables using different metallic shield and central conducting part geometries. The suggested model is composed of a central conductor surrounded by 40 metallic wires circularly disposed. The proposed cable is also a hybrid one allowing simultaneous transmission of optical as well as radio frequency (RF) signals. The fabrication techniques for the proposed cable are similar to the one applied in the realization of optical fibers. Besides the fact that the attenuation along the proposed cable is reduced, the most important result of this study is that the interference generated by this source on external cables is also lowered.
Citation
David Elbaz, and Zeev Zalevsky, "Low-Leakage with Attenuated Material Loss Hybrid Coaxial Cable," Progress In Electromagnetics Research B, Vol. 32, 243-262, 2011.
doi:10.2528/PIERB11053104
References

1. Sali, S., "An improved model for the transfer impedance calculations of braided coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 33, No. 2, May 1991.
doi:10.1109/15.78351

2. Tiedemann, R., "Current flow in coaxial braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 3, Aug. 2003.
doi:10.1109/TEMC.2003.815562

3. Knowles, E. D., "Cable shielding effectiveness testing," IEEE Transactions on Electromagnetic Compatibility, Vol. 16, No. 1, Feb. 1974.

4. Kley, T., "Optimized single-braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 1, Feb. 1993.

5. De Leo, R., G. Cerri, V. Mariani Primiani, and R. Botticelli, "A simple but effective way for cable shielding measurement," IEEE Transactions on Electromagnetic Compatibility, Vol. 41, No. 3, Aug. 1999.
doi:10.1109/15.784151

6. Wheeler, H. A., "Formulas for the skin effect," Proceedings of the I.R.E., Sep. 1942.

7. Wigington, R. L. and N. S. Nahman, "Transient analysis of coaxial cables considering skin effect," Proceedings of the I.R.E., Feb. 1957.

8. Nahman, N. S., "A discussion on the transient analysis of coaxial cables considering high-frequency losses," I.R.E. Transactions on Circuit Theory, Jun. 1962.

9. Nahman, N. S. and D. R. Holt, "Transient analysis of coaxial cables using the skin effect approximation A + B√s," IEEE Transactions on Circuit Theory, Vol. 19, No. 5, Sep. 1972.
doi:10.1109/TCT.1972.1083513

10. Calvez, L. C. and J. Le Bihan, "On numerical computation of functions related to transient response of capacitively loaded coaxial cables," IEEE Transactions on Circuits and Systems, Vol. 31, No. 9, Sep. 1984.
doi:10.1109/TCS.1984.1085577

11. Le Bihan, J. and L. C. Calvez, "A new class of functions for transient analysis of coaxial cables terminated with parallel resistor and capacitor," IEEE Transactions on Circuits and Systems, Vol. 35, No. 5, May 1988.
doi:10.1109/31.1778

12. Yen, C. S., Z. Fazarinc, and R. L. Wheeler, "Time-domain skin-effect model for transient analysis of lossy transmission lines," Proceedings of the IEE, Vol. 70, No. 7, Jul. 1982.

13. Colak, B., O. Cerezci, Z. Demir, M. Yazici, B. Turetken, and I. Araz, "Calculation of leakage through apertures on coaxial cable braided screens," IX-th International Conference on Mathematical Methods in Electromagnetic Theory, MMET'02, 2002.

14. Benson, F. A., P. A. Cudd, and J. M. Tealby, "Leakage from coaxial cables," IEEE Proceedings A, Vol. 139, 1992.

15. Zalevsky, Z., A. K. George, F. Luan, G. Bouwmans, P. Dainese, C. Cordeiro, and N. July, "Photonic crystal in-fiber devices," Opt. Eng., Vol. 44, 125003, 2005.
doi:10.1117/1.2140849

16. Williamson, R. C. and R. D. Esman, "RF Photonics," J. Lightwave Technol., Vol. 26, 1145-1153, 2008.
doi:10.1109/JLT.2008.923627

17. Lin, C. T., J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photonics Technology Letters, Vol. 19, No. 8, 610-612, Apr. 2007.
doi:10.1109/LPT.2007.894326

18. Yashchyshyn, Y., S. Malyshev, A. Chizh, P. Bajurko, and J. Modelski, "Study of active integrated photonic antenna," Proc. EuCAP'09, 3507-3510, Mar. 2009.

19. Chang, C. H., W. C. Liu, P. C. Peng, H. H. Lu, P. Y. Wu, and J. B. Wang, "Hybrid cable television and orthogonal-frequency-division-multiplexing transport system basing on single wavelength polarization and amplitude remodulation schemes," Opt. Lett., Vol. 36, 1716-1718, 2011.
doi:10.1364/OL.36.001716

20. O'brien, D. G., Hybrid fiber optic/electrical cable and connector, US Patent 4,896,939, 1987.