Vol. 119
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-27
Superresolution Enhancement for the Superlens with Anti-Reflection and Phase Control Coatings via Surface Plasmons Modes of Asymmetric Structure
By
Progress In Electromagnetics Research, Vol. 119, 191-206, 2011
Abstract
The paper discusses the reason why the image resolution can be significantly enhanced by the superlens with anti-reflection and phase control coatings (ARPC-superlens) via analyzing the surface plasmons (SPs) modes. ARPC-superlens is an asymmetric structure with finite thickness, in which we first find that there are two asymmetric SPs modes. By comparing the dispersion curve of SPs of ARPC-superlens and the SPs group velocity with their counterparts in the metric ones, we find that the Up Asymmetric Mode and Down Asymmetric Mode are excited within the ARPC-superlens with asymmetric structure. By simulating the aerial images in different SPs modes, the paper also discusses the optimal ratio between the metal slab and the ARPC coatings thickness. The results demonstrate that the subwavelength resolution of ARPC-superlens in Down Asymmetric Mode has been enhanced, when the metal/ARPC thickness ratio is 2:1.
Citation
Pengfei Cao, Xiaoping Zhang, Wei-Jie Kong, Lin Cheng, and Hao Zhang, "Superresolution Enhancement for the Superlens with Anti-Reflection and Phase Control Coatings via Surface Plasmons Modes of Asymmetric Structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010
References

1. Pendry, J. B. and Negative refraction makes a perfect lens, "Phys. Rev. Lett.,", Vol. 85, 3966, 2000.

2. Veselago, V. G., "Properties of materials having simultaneously negative values of dielectric (ε) and magnetic (μ) susceptibilities," Sov. Phys. Solid State, Vol. 8, 2854-2856, 1967.
doi:10.2528/PIER01081901

3. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.
doi:10.2528/PIER03102102

4. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
doi:10.1063/1.1636250

5. Liu, Z. W., N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett., Vol. 83, 5184, 2003.
doi:10.1364/JOSAA.25.000911

6. Moore, C. P., M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," JOSA A, Vol. 25, No. 4, 911-918, 2008.
doi:10.1364/OE.17.011309

7. Shi, Z., V. Kochergin, and F. Wang, "193nm superlens imaging structure for 20nm lithography node," Optics Express, Vol. 17, No. 14, 11309-11314, 2009.
doi:10.1063/1.3293448

8. Chaturvedi, P., W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, "A smooth optical superlens," Appl. Phys. Lett., Vol. 96, 043102, 2010.
doi:10.2528/PIER10081102

9. Chuang, C.-H. and Y.-L. Lo, "Signal analysis of apertureless scanning near-field optical microscopy with superlens," Progress In Electromagnetics Research, Vol. 109, 83-106, 2010.
doi:10.2528/PIER10051309

10. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.

11. Raether, H., Surface Plasmons, Springer, Berlin, 1988.
doi:10.1364/AO.49.000A36

12. Tremblay, G. and Y. Sheng, "Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique," Applied Optics, Vol. 49, No. 7, 1, 2010.
doi:10.1163/156939310791586098

13. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon esonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1005-1014, 2010.
doi:10.1163/156939309789566914

14. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.

15. Li, Y. and X. Zhang, "Nonlinear optical switch utilizing long-range surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2363-2371, 2009.
doi:10.1163/156939309787612419

16. Xie, H., F. Kong, and K. Li, "The electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 535-548, 2009.
doi:10.2528/PIER11042005

17. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
doi:10.2528/PIER10072906

18. Zhao, J., K. Li, F. Kong, and D. Liu-Ge, "Enhancement of blue light emission using surface plasmons coupling with quantum wells ," Progress In Electromagnetics Research, Vol. 108, 293-306, 2010.
doi:10.1007/s00340-009-3615-8

19. Xu, T., L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, "Localizing surface plasmons with a metalcladding superlens for projecting deep-subwavelength patterns," Appl. Phys. B, Vol. 97, No. 1, 175-179, 2009.
doi:10.2528/PIER09092801

20. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.1063/1.3098980

21. Lee, K., Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett., Vol. 94, 101113, 2009.
doi:10.1364/OE.16.001711

22. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Optics Express, Vol. 16, No. 3, 1711-1718, 2008.
doi:10.2528/PIER10061801

23. Cao, P., L. Cheng, Y. E. Li, X. Zhang, Q. Meng, and W. J. Kong, "Reflectivity and phase control research for superresolution enhancement via the thin films mismatc," Progress In Electromagnetics Research, Vol. 107, 365-378, 2010.
doi:10.1063/1.2112194

24. Cheng, Q. and T. J. Cui, "Guided modes in a planar anisotropic biaxial slab with partially negative permittivity and permeability ," Appl. Phy. Lett., Vol. 87, No. 17, 174102, 2005.
doi:10.1103/PhysRevB.67.193106

25. Ye, Z., "Optical transmission and reflection of perfect lenses by left handed materials," Phys. Rev. B, Vol. 67, 193106, 2003.
doi:10.1117/12.681492

26. Liu, Y., D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, "Negative group velocity of surface plasmons on thin metallic films," Proc. SPIE, Vol. 6323, 63231M, 2006.

27. Fox, M., Optical Properties of Solids, Oxford Univerity Press, 2001.
doi:10.2528/PIER09052801

28. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.

29. Chen, Z. and H. J. Simon, "Attenuated total reflectance from a layered silver grating with coupled surface waves," JOSA B, 5, 1988.