Vol. 32
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-08
An Innovative Radar Imaging System Based on the Capability of an UWB Array to Steer Successively in Different Directions
By
Progress In Electromagnetics Research B, Vol. 32, 91-106, 2011
Abstract
An innovative radar imaging system, based on the capability of a fixed UWB array to radiate short pulses in different directions along time with the principle of electronic beam steering, is presented in this paper. To demonstrate its concept, the analysis presented in this paper is based on simulation results. As function of the use of either only one antenna or several antennas in reception, two radar imaging algorithms have been developed and are detailed in this paper. These algorithms permit to obtain an image of the analyzed scene thanks to the transient beam pattern of the array used in emission. Finally, with a same analyzed scene, these algorithms have been compared with the time reversal method and the back projection algorithm, in association with a SAR imaging system. The conditions of applicability of these methods are also discussed.
Citation
Laurent Desrumaux, Michele Lalande, Joel Andrieu, Valerie Bertrand, and Bernard Jecko, "An Innovative Radar Imaging System Based on the Capability of an UWB Array to Steer Successively in Different Directions," Progress In Electromagnetics Research B, Vol. 32, 91-106, 2011.
doi:10.2528/PIERB11053003
References

1. Immoreev, I. I. and J. D. Taylor, "Optimal short pulse ultra-wideband radar signal detection," Ultra-wideband Short-pulse Electromagnetics 5, 207-214, Smith and Cloude (eds.), Kluwer Academic/Plenium Publishers, 2002.

2. Ressler, M. A., "The army research laboratory ultra wideband BoomSAR," Geoscience and Remote Sensing Symposium, Vol. 3, 1886-1888, 1996.

3. Boutros, J. and G. Barrie, "Ultra-wideband synthetic aperture radar imaging, effect of off-track motion on resolution," Technical Memorandum, Nov. 2003.

4. Barrie, G., "Through-wall synthetic aperture radar (TWSAR) 3D imaging, algorithm design," Technical Memorandum, Nov. 2004.

5. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Transactions on Aerospace and Electronics Systems, Vol. 41, No. 1, Jan. 2005.

6. Fink, M., C. Prada, D. Cassereau, and E. Kerbrat, "Time reversal techniques in non destructive testing," Europ. Cong. Acoust., 2002.

7. Neyrat, M., C. Guiffaut, and A. Reinex, "Reverse time migration algorithm for detection of buried objects in time domain," Antennas and Propagations Society International Symposium, Jul. 2008.

8. Desrumaux, L., A. Godard, M. Lalande, V. Bertrand, J. Andrieu, and B. Jecko, "An original antenna for transient high power UWB arrays: The Shark antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2010.
doi:10.1109/TAP.2010.2050418

9. Desrumaux, L., M. Lalande, J. Andrieu, V. Bertrand, B. Jecko, and M. Brishoual, "The Shark antenna: A miniature antenna for transient ultra wide band applications in the frequency band 800 MHz--8 GHz," European Conference on Antennas and Propagation EUCAP 2010, Barcelona, Spain, Apr. 2010.

10. Lalande, M., J. C. Diot, S. Vauchamp, J. Andrieu, V. Bertrand, B. Beillard, B. Vergne, V. Couderc, A. Barthélémy, D. Gontier, and R. Guillerey, "An ultra wideband impulse optoelectronic radar: RUGBI," Progress In Electromagnetics Research B, Vol. 11, 205-222, 2009.
doi:10.2528/PIERB08120306

11. Salo, G. R. and J. S. Gwynne, "UWB antenna characterization and optimization methodologies," Ultra-wideband Short-pulse Electromagnetics 6, 329-336, Mokole, et al. (eds.), Kluwer Academic/Plenium Publishers, 2003.

12. Desrumaux, L., S. Vauchamp, V. Bertrand, V. Couderc, M. Lalande, and J. Andrieu, "Transient measurements of an agile UWB array," European Microwave Week 2010, Paris, Sep. 2010.

13. Hum, S. V., H. L. P. A. Madanayake, and L. T. Bruton, "UWB beamforming using 2-D beam digital filters," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 807-807, Mar. 2009.
doi:10.1109/TAP.2009.2013442

14. Schuler, K. and W. Wiesbeck, "Tapering of multitransmit digital beamforming arrays," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, Jul. 2008.