Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-14
RCS Computation Using a Parallel in-Core and Out-of-Core Direct Solver
By
Progress In Electromagnetics Research, Vol. 118, 505-525, 2011
Abstract
Application to RCS computation of a higher order solver based on the surface integral approach is presented. The solver uses a direct method to solve the corresponding algebraic system of equations. Two versions of the solver are available: in-core and out-of-core. Both are efficiently implemented as parallel codes using Message Passing Interface libraries. Several benchmark structures are analyzed showing the reliability, performance, and versatility to run in a wide variety of computer platforms, of the solver. The results shown are illustrative of what is the maximum frequency of analysis of the structures for a given type of simulation platform.
Citation
Daniel Garcia-Donoro, Ignacio Martinez-Fernandez, Luis E. Garcia-Castillo, Yu Zhang, and Tapan Kumar Sarkar, "RCS Computation Using a Parallel in-Core and Out-of-Core Direct Solver," Progress In Electromagnetics Research, Vol. 118, 505-525, 2011.
doi:10.2528/PIER11052611
References

1. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Transactions on Antennas and Propagation, Vol. 16, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296

2. Ufimtsev, P. Y., Theory of Edge Diffraction in Electromagnetics, Tech Science Press, 2003.

3. Moschovitis, C. G., H. Anastassiu, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an extended stationary phase method based on Fresnel functions (SPM-F)," Progress In Electromagnetics Research, Vol. 107, 63-99, 2010.
doi:10.2528/PIER10040104

4. Keller, J. B., "Geometrical theory of diffction," Journal of the Optical Society of America, 1962.

5. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, 1448-1461, Nov. 1974.

6. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, 194-205, Feb. 1989.
doi:10.1109/8.18706

7. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.

8. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.

9. Salazar-Palma, M., T. K. Sarkar, L. E. García-Castillo, T. Roy, and A. R. Djordjevic, Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling, Artech House Publishers, Inc., Norwood, MA, 1998.

10. Taflove, M., Advances in Computational Electrodynamics: The Finite-difference Time-domain Method , Artech House Publishers, Inc., 1998.

11. Ilic, M., M. Djordjevic, A. Ilic, and B. Notaros, "Higher order hybrid FEM-MoM technique for analysis of antennas and scatterers," IEEE Transactions on Antennas and Propagation, Vol. 57, 1452-1460, May 2009.
doi:10.1109/TAP.2009.2016725

12. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Transactions on Antennas and Propagation, Vol. 55, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814

13. Becker, A. and V. Hansen, "A hybrid method combining the multitemporal resolution time-domain method of moments with the time-domain geometrical theory of di®raction for thin-wire antenna problems," IEEE Transactions on Antennas and Propagation, Vol. 54, 953-960, Mar. 2006.
doi:10.1109/TAP.2006.869906

14. Fernandez-Recio, R., L. E. García-Castillo, I. Gomez-Revuelto, and M. Salazar-Palma, "Fully coupled hybrid FEM-UTD method using NURBS for the analysis of radiation problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 774-783, Mar. 2008.
doi:10.1109/TAP.2008.916878

15. Gomez-Revuelto, I., L. E. García-Castillo, M. Salazar-Palma, and T. K. Sarkar, "Fully coupled hybrid method FEM/highfrequency technique for the analysis of radiation and scattering problems ," Microwave and Optical Technology Letters, Vol. 47, 104-107, Oct. 2005.
doi:10.1002/mop.21094

16. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and NURBS model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

17. Wang, S., X. Guan, D.-W. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

18. Lai, B., N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid method of higher-order MoM and Nyström discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401

19. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128

20. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Transactions on Computer Aided Design Integrated Circuits, Vol. 16, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

21. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems ," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

22. Hu, L., L.-W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204

23. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics, Vol. 41, 1476-1479, May 2005.
doi:10.1109/TMAG.2005.844564

24. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

25. Seo, S. M. and J. F. Lee, "A single level low rank IE-QR algorithm for PEC scattering problems using EFIE formulation," IEEE Transactions on Antennas and Propagation, Vol. 52, 2141-2146, Aug. 2004.
doi:10.1109/TAP.2004.832367

26. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

27. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, Nov. 2005.

28. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015

29. Bebendorf, M. and W. Hackbusch, "Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L-infinity-coefficients," Numerische Mathematik, Vol. 95, No. 1, 1-28, 2003.
doi:10.1007/s00211-002-0445-6

30. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Transactions on Antennas and Propagation, Vol. 44, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

31. Rius, J., J. Parron, A. Heldring, J. Tamayo, and E. Ubeda, "Fast iterative solution of integral equations with method of moments and matrix decomposition algorithm; singular value decomposition," IEEE Transactions on Antennas and Propagation, Vol. 56, 2314-2324, Aug. 2008.
doi:10.1109/TAP.2008.926762

32. Vion, A., R. V. Sabariego, and C. Geuzaine, "A model reduction algorithm for solving multiple scattering problems using iterative methods," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1470-1473, 2011.
doi:10.1109/TMAG.2010.2078800

33. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for e±cient solution of method of moment matrix equations," Microwave and Optical Technology Letters, Vol. 36, 95-100, Jan. 2003.
doi:10.1002/mop.10685

34. Delgado, C., M. Catedra, and R. Mittra, "Efficient multilevel approach for the generation of characteristic basis functions for large scatters," IEEE Transactions on Antennas and Propagation, Vol. 56, 2134-2137, Jul. 2008.

35. Shifman, Y. and Y. Leviatan, "Scattering by a groove in a conducting plane --- A PO-MoM hybrid formulation and wavelet analysis," IEEE Transactions on Antennas and Propagation, Vol. 49, 1807-1811, Dec. 2001.
doi:10.1109/8.982463

36. Dai, S. Y., C. M. Zhang, and Z. S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2187-2196, 2009.
doi:10.1163/156939309790109306

37. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns ," IEEE Transactions on Antennas and Propagation, Vol. 56, 2306-2313, Aug. 2008.
doi:10.1109/TAP.2008.926739

38. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

39. Heldring, A., J. Rius, J. Tamayo, J. Parro, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Transactions on Antennas and Propagation, Vol. 59, 526-536, Feb. 2011.
doi:10.1109/TAP.2010.2096385

40. Zhang, Y., M. Taylor, T. Sarkar, H. Moon, and M. Yuan, "Solving large complex problems using a higher-order basis: Parallel incore and out-of-core integral-equation solvers," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 13-30, 2008.
doi:10.1109/MAP.2008.4653660

41. García-Donoro, D., Y. Zhang, W. Zhao, T. K. Sarkar, L. E. García-Castillo, and M. Salazar-Palma, "HOBBIES: Higher order basis based integral equation solver with automatic goal oriented optimization," CEFC 2010, Chicago, Illinois, USA, May 2010.

42. Zhang, Y., M. Taylor, T. Sarkar, A. De, M. Yuan, H. Moon, and C. Liang, "Parallel in-core and out-of-core solution of electrically large problems using the RWG basis functions," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 84-94, 2008.
doi:10.1109/MAP.2008.4674713

43. Zhang, Y., R. van de Geijn, M. Taylor, and T. Sarkar, "Parallel MoM using higher-order basis functions and PLAPACK in-core and out-of-core solvers for challenging EM simulations ," IEEE Antennas and Propagation Magazine, Vol. 51, No. 5, 42-60, 2009.
doi:10.1109/MAP.2009.5432038

44. Li, L.-W., Y.-J. Wang, and E.-P. Li, "MPI-based parallelized precorrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects," Progress In Electromagnetics Research, Vol. 42, 247-259, 2003.
doi:10.2528/PIER03030701

45. Zhang, Y., J. Porter, M. Taylor, and T. Sarkar, "Solving challenging electromagnetic problems using MoM and a parallel out-of-core solver on high performance clusters," IEEE Antennas and Propagation Society International Symposium 2008, AP-S 2008, 1-4, 2008.

46. Harrington, R. F., "Boundary integral formulations for homogenous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

47. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy material of arbitrary thickness," IEEE Transactions on Antennas and Propagation, Vol. 3, No. 1, 1-15, 1989.

48. Zhang, Y. and T. K. Sarkar, Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley-IEEE Press, Jul. 2009.

49. Message passing interface forum, http://www.mpi-forum.org/.

50. The ScaLAPACK project, http://www.netlib.org/scalapack/.

51. Woo, A., H.Wang, M. Schuh, and M. Sanders, "EM programmer's notebook. Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Magazine, Vol. 35, 84-89, Feb. 1993.
doi:10.1109/74.210840

52. Heldring, A., J. M. Rius, and J. M. Tamayo, "Direct MoM solution of electrically large problems with N2 complexity," 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) , 1-4, 2010.