Vol. 25
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-07-23
Derivation of Electromagnetic Properties of Child Biological Tissues at Radio Frequencies
By
Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011
Abstract
The knowledge of electromagnetic properties of biological tissues is required to assess the radio frequency energy deposition in children exposed to electromagnetic fields. The issue whether children should be considered a dosimetric sensitive group in comparison to adults, to which the confirmation of age-dependence of human tissue electromagnetic properties potentially may contribute remains debatable at scientific forums. This paper derives the formula for calculation of electromagnetic properties (permittivity and conductivity) of children tissues, as a function of height, weight, and age, respectively. By using the proposed formula, we have calculated and presented electromagnetic properties of the muscle, brain (gray matter) and skin for 1-year-old to 10-year-old children for 900 MHz, 1800 MHz and 2.4 GHz, at which frequencies most of radio frequency devices used by children operate. The trend over the age of child electromagnetic properties has been presented, and electromagnetic properties at different frequencies for the same child age have also been compared. For certain tissues, comparison between the children at various age and adult electromagnetic parameters has been given. A database with electromagnetic properties for children, of all ages, tissues and frequencies may be built up with the proposed approach. It will further advance research on the assessment of children exposure to electromagnetic fields. Formula can also be used for the determination of electromagnetic parameters for children with specific height and weight.
Citation
Mimoza Ibrani, Luan Ahma, Enver Hamiti, and Jetmir Haxhibeqiri, "Derivation of Electromagnetic Properties of Child Biological Tissues at Radio Frequencies," Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011.
doi:10.2528/PIERL11052002
References

1. ICNIRP "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998.

2. IEEE Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 1999.

3. IEEE Standards for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 2005.

4. Bit-Babik, , G., A. W. Guy, C.-K. Chou, A. Faraone, M. Kanda, A. Gessner, J. Wang, and O. Fujiwara, "Simulation of exposure and SAR estimation for adult and child heads exposed to radiofrequency energy from portable communication devices," Radiation Research, Vol. 163, 580-590, 2005.
doi:10.1667/RR3353

5. Wiart, J., A. Hadjem, N. Gadi, I. Bloch, M. F. Wong, A. Pradier, D. Lautru, V. F. Hanna, and C. Dale, "Modeling of RF head exposure in children," Bioelectromagnetics, 2005.

6. Wiart, J., A. Hadjem, M. F. Wong, and I. Bloch, "Analysis of RF exposure in the head tissues of children and adults," Phys. Med. Biol., Vol. 53, 3681-3695, 2008.
doi:10.1088/0031-9155/53/13/019

7. Thurai, M., V. D. Goodridge, R. J. Sheppard, and E. H. Grant, "Variation with age of the dielectric properties of mouse brain cerebrum," Phys. Med. Biol., Vol. 29, 1133-1136, 1984.
doi:10.1088/0031-9155/29/9/009

8. Thurai, M., M. C. Steel, R. J. Shepard, and E. H. Grant, "Dielectric properties of developing rabbit brain at 37 degrees," Bioelectromagnetics, 1985.

9. Peyman, , A., A. Rezazadeh, and C. Gabriel, "Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies," Phys. Med. Biol., 2001.

10. Gabriel, C., "Dielectric properties of biological tissue: Variation with age," Bioelectromagnetics, 2005.

11. Peyman, A., C. Gabriel, E. H. Grant, G. Vermeeren, and L. Martens, "Variation of the dielectric properties of tissues with age: The e®ect on the values of SAR in children when exposed to walkie-talkie devices," Phys. Med. Biol., 2009.

12. Wang, J., O. Fujiwara, and S. Watanabe, "Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 2006.

13. Altman, P. L. and D. S. Dittmer, Biology Data Book: Blood and Other Bloody Fluids, Federation of American Societies for Experimental Biology, 1974.

14. Wells, J. C. K., M. S. Fewtrell, P. S. W. Davies, J. E. Williams, W. A. Coward, and T. J. Cole, "Prediction of total body water in infants and children," Arch. Dis. Child, Vol. 90, 965-971, 2005.
doi:10.1136/adc.2004.067538

15. Lichtenecker, K., "Die dielekrizitatskonstante naturlicher und kunstlicher mischkorper," Physikalische Zeitschrift, Vol. 27, 115-158, 1926.

16. Simpkin, R., "Derivation of Leichtencker's logarithmic mixture formula from Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 3, 2010.
doi:10.1109/TMTT.2010.2040406

17. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617

18. Morgenstern, B., D. Mahoney, and B. Warady, "Estimating total body water in children on the basis of height and weight: A reevaluation of the formulas of mellits and cheek," J. Am. Soc. Nephrol., Vol. 13, 1884-1888, 2002.
doi:10.1097/01.ASN.0000019920.30041.95

19. Chumlea, W., S. Guo, C. Zeller, N. Re, R. Baumgartner, P. Garry, J. Wang, R. Pierson, S. Heymsfields, and R. Siervogel, "Total body water reference values and prediction equations for adults ," Kidney International, Vol. 59, 2250-2258, 2001.

20. Gabriel , C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Brooks Air Force, Tech. Rep. AL/OE-TR-1996-0037, 1996.

21. Moradi, G. A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201

22. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403

23. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications , Vol. 24, No. 11-12, 1536-1574, 2010.

24. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805

25. Addamo, , G., G. Virone, D. Vaccaneo, R. Tascone, O. A. Peverini, and R. Orta, "An adaptive cavity setup for accurate measurements of complex dielectric permittivity," Progress In Electromagnetics Research, Vol. 105, 141-155, 2010.
doi:10.2528/PIER10042606