Vol. 32
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-24
Design of a Non-Contact Vertical Transition for a 3D mm -Wave Multi-Chip Module Based on Shielded Membrane Supported Interconnects
By
Progress In Electromagnetics Research B, Vol. 32, 405-423, 2011
Abstract
The preliminary design concept, for a low-loss, high-bandwidth electromagnetically coupled vertical transition for use as a via between adjacent levels of a 3D-MCM based on membrane-supported striplines with micro-machined shielding, is presented. The design methodology, modeling using Ansoft HFSS and simulated results are presented and together represent a complete electrical characterization of the vertical transition. The simulated insertion loss of these structures is shown to be as low as 0.12 dB at 60 GHz with a 44 GHz 1 dB bandwidth. Besides studying the vertical transition, the analysis is extended to identify the range of directional coupling which can be achieved using this type of structure, which is shown to be greater than 3 dB. The structures studied rely on a versatile micromachining technique for the fabrication of the micro-shielding which allows for the conformal packaging of lines and devices, with the ultimate aim of realizing 3D system-in-a-package type modules. The concept and proposed fabrication techniques for these modules, including methods of flip-chip MMIC attachment are detailed.
Citation
Novak E. S. Farrington, and Stavros Iezekiel, "Design of a Non-Contact Vertical Transition for a 3D mm -Wave Multi-Chip Module Based on Shielded Membrane Supported Interconnects," Progress In Electromagnetics Research B, Vol. 32, 405-423, 2011.
doi:10.2528/PIERB11051503
References

1. Farrington, N. E. S. and S. Iezekiel, "Deisgn and simulation of membrane supported transmission lines for interconnects in a mm-wave multichip module," Progress In Electromagnetics Research B, Vol. 27, 165-186, 2011.

2. Farrington, N. E. S., Micromachined transmission line inter-connects for millimetre-wave multi-chip modules, Ph.D. thesis, School of Electrical and Electronic Engineering, The University of Leeds, 2005.

3. Dib, N. I., W. P. Harokopus, Jr., L. P. B. Katehi, C. C. Ling, and G. M. Rebeiz, "Study of a novel planar transmission line," IEEE Int. Microwave Theory Tech. Symposium Digest, 623-626.

4. Weller, T. M., G. M. Rebeiz, and L. P. Katehi, "Experimental results on microshield transmission line circuits," IEEE MTT-S Digest, 827-830, 1993.
doi:10.1109/MWSYM.1993.276747

5. Dib, N. I. and P. B. Katehi, "Impedance calculation for the microshield line," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 10, 406-408, Oct. 1992.
doi:10.1109/75.160122

6. Weller, T. M., L. P. Katehi, and G. M. Rebeiz, "High-performance microshield line components," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 3, 534-543, Mar. 1995.
doi:10.1109/22.372098

7. Weller, T. M., L. P. Katehi, and G. M. Rebeiz, "A 250-GHz Microshield bandpas filter," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 5, May 1995.
doi:10.1109/75.374082

8. Petrini, I., F. Giacomozzi, D. Neculoiu, D. Vasilache, C. Buiculescu, and A. Muller, "Micromachined hybrid integrated receiver modules for 38 GHz and 77 GHz, on silicon substrate, technology and manufacturing," Semiconductor Conference, 2002, CAS 2002 Proc., Vol. 1, 29-32, Oct. 2002.

9. Duwe, K., S. Hirsch, and J. Muller, "Micromachined low pass filters and coplanar waveguides for D-band frequencies based on HMDSN-membranes," MSMW 2001 Symposium Proc., 675-677, Jun. 2001.

10. Liu, W. Y., D. P. Steenson, and M. B. Steer, "Membrane-supported CPW with mounted active devices," IEEE Microwave and Wireless Component Letters, Vol. 11, No. 4, 167-169, Apr. 2001.
doi:10.1109/7260.916332

11. Liu, W. Y., "Mass produced copper-on-polymer-membrane boards for micromachined millimeter-wave circuits," IEEE EDMO Proc., 205-210, Vienna, 2001.

12. Drayton, R. F. and L. P. B. Katehi, "Development of self-packaged high frequency circuits using micromachining techniques," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 9, 2073-2080, Sep. 1995.
doi:10.1109/22.414543

13. Katehi, L. P. B. and G. M. Rebeiz, "Novel micromachined approaches to MMICs using low-parasitic, high-performance transmission media and environments," IEEE Int. Microwave Theory Tech. Symposium Digest, 1145-1148, 1996.

14. Robertson, S. V., L. P. B. Katehi, and G. M. Rebeiz, "Micromachined W-band filters," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 598-606, Apr. 1996.
doi:10.1109/22.491027

15. Rebeiz, G. M., L. P. B. Katehi, T. M. Weller, C. Y. Chi, and S. V. Robertson, "Micromachined membrane filters for microwave and millimetre-wave applications (Invited article)," Int. J. of Microwave and Millimeter-wave Computer Aided Engineering, Vol. 7, 149-166, Feb. 1997.
doi:10.1002/(SICI)1522-6301(199703)7:2<149::AID-MMCE1>3.0.CO;2-N

16. Robertson, S. V., A. R. Brown, L. P. B. Katehi, and G. M. Rebeiz, "A 10--60-GHz micromachined directional coupler," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1845-1849, Nov. 1998.
doi:10.1109/22.734498

17. Henderson, R. M., T. M. Weller, and L. P. B. Katehi, "Three-dimensional W-band circuits using Si micromachining," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 2, 13-19, 441--444, Jun. 1999.

18. Lee, K. Y., N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," J. Vacuum Science and Technology B., Vol. 13, No. 6, 3012-3016, Nov./Dec. 1995.
doi:10.1116/1.588297

19. Lorenz, H., M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: A low-cost negative resist for MEMS," J. of Micromechanical Microengineering, Vol. 7, 121-124, 1997.
doi:10.1088/0960-1317/7/3/010

20. Despont, M., H. Lorenz, N. Fahrni, J. Brugger, P. Renaud, and P. Vettiger, "High-aspect-ratio, ultrathick, negative-tone near-UV photoresist for MEMs applications," IEEE Proc. Int. Workshop on Micro-electro Mechanical Systems, 518-522, Jan. 1997.

21. Lorenz, H., M. Laudon, and P. Renaud, "Mechanical characterization of a new high-aspect_ratio near UV-photoresist," J. Micro-electronic Engineering, Vol. 41--42, 371-374, 1998.

22. Farrington, N. E. S. and S. Iezekiel, "Accurate layer thickness control and planarization for multi-layer SU-8 structures," SPIE J. Micro./Nanolith. MEMS MOEMS, Vol. 10, 013019, Mar. 29, 2011, doi:10.1117/1.3563599.

23. Henderson, R. M., K. J. Herrick, T. M. Weller, S. V. Robertson, R. T. Kihm, and L. P. B. Katehi, "Three-dimensional high-frequency distribution networks. II. Packaging and integration," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 10, 1643-1651, Oct. 2000.
doi:10.1109/22.873891

24. Katehi, L. P. B., J. F. Harvey, and K. J. Herrick, "3-D integration of RF circuits using Si micromachining," IEEE Microwave Magazine, 30-39, Mar. 2001.
doi:10.1109/6668.918260

25. Coutant, M. and K. Chang, "Broadband, electrically long vertical waveguide interconnect," Electronic Letters, Vol. 36, No. 25, 2076-2078, Dec. 2000.
doi:10.1049/el:20001422

26. Davidovitz, M., R. A. Sainati, and S. J. Fraasch, "A non-contact interconnect through an electrically thick ground plate common to two microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 4, 753-759, Apr. 1995.
doi:10.1109/22.375221

27. Jackson, R. W. and D. W. Matolak, "Surface-to-surface transition via electromagnetic coupling of coplanar waveguides," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 11, 1027-1031, Nov. 1987.
doi:10.1109/TMTT.1987.1133802

28. Ho, C.-H., L. Fan, and K. Chang, "Slot-coupled double-sided microstrip interconnects and couplers," IEEE Int. Microwave Theory Tech. Symposium Digest, 1321-1324, Jun. 1993.
doi:10.1109/MWSYM.1993.277119

29. VandenBerg, N. L. and L. P. B. Katehi, "Broadband vertical interconnects using slot-coupled shielded microstrip lines," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 1, 81-88, Jan. 1992.
doi:10.1109/22.108326

30. Raskin, J.-P., G. Gauthier, L. P. B. Katehi, and G. M. Rebeiz, "W-band single-layer vertical transitions," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 1, 161-164, Jan. 2000.
doi:10.1109/22.817487

31. Herrick, K. J., J.-G. Yook, and L. P. B. Katehi, "Microtechnology in the development of three-dimensional circuits," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1832-1844, Nov. 1998.
doi:10.1109/22.734496

32. Ommodt, K., S. Sanzgiri, F. German, and T. Jones, "Vertical interconnects for phased array packaging," IEEE Antennas and Propagation Society Int. Symposium Dig., Vol. 2, 1334-1337, Jul. 1996.

33. Minotani, T., Y. Royter, H. Ishii, A. Hirata, K. Machida, A. Sasaki, and T. Nagatsuma, "Three-dimensional millimeter-wave photonic integrated circuits on Si," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 1, 57-60, May 2001.

34. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Novel three-dimensional vertical interconnect technology for microwave and RF applications," IEEE Int. Microwave Theory Tech. IEEE Int. Microwave Theory Tech., Vol. 2, 641-644, Jun. 1999.

35. Becker, J. P. and L. P. B. Katehi, "Multilevel finite ground coplanar line transitions for high-density packaging using silicon micromachining," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 1, 303-306, Jun. 2000.

36. Alléaume, P., C. Toussain, T. Huet, and M. Camiade, "Millimeter-wave SMT low cost plastic packages for automotive RADAR at 77 GHz and high data rate E-band radios," IEEE Int. Microwave Theory Tech. Symposium Dig., Vol. 1, 789-792, Jun. 2009.

37. Byun, W., B. Kim, K. Kim, K. Eun, M. S. Kulke, R. Kersten, O. Mollenbeck, G. Rittweger, and M. Daejeon, "Design of vertical transition for 40 GHz transceiver module using LTCC technology," Proc. European Microwave Integrated Circuit Conference, EuMIC 2007, 555-558, Munich, Germany, 2007.

38. Lau, J. H., "Flip chip technologies," McGraw Hill, 1996.

39. Lin, J.-K., J. Drye, W. Lytle, T. Scharr, R. Subrahmanya, and R. Sharma, "Conductive polymer bump interconnects," IEEE Proc. Electronic Components and Technology Conference, 1059-1068, May 1996.

40. Oh, K. W. and C. H. Ahn, "Flip-chip packaging with micromachined conductive polymer bumps," IEEE Proc. Adhesive Joining and Coating Technology in Electronic Manufacturing, 224-228, Sep. 1998.

41. Oh, K. W., C. H. Ahn, and K. P. Roenker, "Flip-chip packaging using micromachined conductive polymer bumps and alignment pedestals for MOEMS," IEEE J. on Selected Topics in Quantum Electronics, Vol. 5, No. 1, 119-126, Jan./Feb. 1999.
doi:10.1109/2944.748115

42. Oh, K. W. and C. H. Ahn, "A new flip-chip bonding technique using micromachined conductive polymer bumps," IEEE Trans. Advanced Packaging, Vol. 22, No. 4, 586-591, Nov. 1999.
doi:10.1109/6040.803450

43. Li, C., F. E. Sauser, R. Azizkhan, C. H. Ahn, and I. Papautsky, "Polymer flip-chip bonding of pressure sensors on flexible kapton film for neonatal catheters," IEEE Int. Conf. Proc., Micro Electro Mechanical Systems, MEMS, 749-752, 2004.

44. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley and Sons Inc., 1998.

45. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, 1980.