Vol. 19
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-06-22
Dispersion Relation and Band Gaps of 3D Photonic Crystals Made of Spheres
By
Progress In Electromagnetics Research M, Vol. 19, 1-12, 2011
Abstract
In this paper, we introduce a dispersion equation for 3D photonic crystals made of parallel layers of non-overlapping spheres, valid when both wavelength and separation between layers are much larger than the distance between neighbouring spheres. This equation is based on the Korringa-Kohn-Rostoker (KKR) wave calculation method developed by Stefanou et al.~and can be used to predict the spectral positions of bandgaps in structures made of dispersive spheres. Perfect agreement between the spectral positions of bandgaps predicted with our simplified equation and those obtained with the numerical code MULTEM2 was observed. We find that this simplified relation allows us to identify two types of bandgaps: those related to the constitutive parameters of the spheres and those related to the three dimensional periodicity (distance between layers). Bandgaps of the first type are independent of the frequency and the distance between layers, while those of the second type depend only on these two quantities. We then analyze the influence of the constitutive parameters of the spheres on the spectral position of bandgaps for spheres immersed in dielectric or magnetic homogeneous media. The number and positions of the bandgaps are affected by the permitivity (permeability) of the host medium if the spheres have dispersive permitivity (permeability).
Citation
Francisco Guller, Marina E. Inchaussandague, and Ricardo Depine, "Dispersion Relation and Band Gaps of 3D Photonic Crystals Made of Spheres," Progress In Electromagnetics Research M, Vol. 19, 1-12, 2011.
doi:10.2528/PIERM11051405
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.

3. Joannopoulos, J. R., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995.

4. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, No. 25, 3152-3155, 1980.
doi:10.1103/PhysRevLett.65.3152

5. Ohtaka, K., "Scattering theory of low-energy photon diffraction," J. Phys. C, Vol. 13, No. 4, 667, 1980.

6. Modinos, A., "Scattering of electromagnetic waves by a plane of spheres-formalism," Physica A, Vol. 141, No. 2, 575-588, 1987.
doi:10.1016/0378-4371(87)90184-1

7. Stefanou, N., V. Karathanos, and A. Modinos, "Scattering of electromagnetic waves by periodic structures," J. Phys.: Condens. Matter, Vol. 4, No. 36, 7389, 1992.

8. Dorado, L. A., R. A. Depine, and H. Miguez, "Effect of extinction on the high-energy optical response of photonic crystals," Phys. Rev. B, Vol. 75, No. 24, 241101, 2007.

9. Dorado, L. A., R. A. Depine, G. Lozano, and H. Miguez, "Interplay between crystal-size and disorder effects in the high- energy optical response of photonic crystal slabs," Phys. Rev. B, Vol. 76, No. 24, 245103, 2007.

10. Stefanou, N., V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: Frequency bands and transmission coeffcients," Comput. Phys. Commun., Vol. 113, No. 1, 49-77, 1998.
doi:10.1016/S0010-4655(98)00060-5

11. Stefanou, N., V. Yannopapas, and A. Modinos, "MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun., Vol. 132, No. 1, 189-196, 2000.
doi:10.1016/S0010-4655(00)00131-4

12. Monsoriu, J., R. A. Depine, M. L. Martinez Ricci, and E. Silvestre, "Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals," Opt. Express, Vol. 14, No. 26, 12958, 2006.

13. Li, J., L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett., Vol. 90, No. 8, 083901, 2003.

14. Ashcroft, N. W. and Mermin, Solid State Physics, Saunders College Publishing, Philadelphia, 1976.

15. Kapitza, P. L. and A. M. Dirac, "The reflection of electrons from standing light waves," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 29, No. 2, 297-300, 1933.
doi:10.1017/S0305004100011105

16. Zachariasen, W. H., Theory of X-ray Diffraction in Crystals, Courier Dover Publications, New York, 2004.