Vol. 18
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-06-15
Imaging of Separate Scatterers by Means of a Multiscaling Multiregion Inexact-Newton Approach
By
Progress In Electromagnetics Research M, Vol. 18, 247-257, 2011
Abstract
The integration of the Iterative Multi-Scaling Multi-Region (IMSMR) procedure and the Inexact-Newton method (INM) is proposed within the contrast-field formulation of the inverse scattering problem. Thanks to its features, such an implementation is expected to effectively deal with the reconstruction of separated objects. A selected set of numerical results is presented to assess the potentialities of the IMSMR-INM method also in comparison with previous INM-based inversions.
Citation
Giacomo Oliveri, Andrea Randazzo, Matteo Pastorino, and Andrea Massa, "Imaging of Separate Scatterers by Means of a Multiscaling Multiregion Inexact-Newton Approach," Progress In Electromagnetics Research M, Vol. 18, 247-257, 2011.
doi:10.2528/PIERM11051404
References

1. Giakos, G. C., et al. "Noninvasive imaging for the new century," IEEE Instrum. Meas. Mag., Vol. 2, 32-35, Jun. 1999.
doi:10.1109/5289.765967

2. Zoughi, R., Microwave Nondestructive Testing and Evaluation, Kluwer Academic, Amsterdam, The Netherlands, 2000.
doi:10.1007/978-94-015-1303-6

3. Caorsi, S., A. Massa, and M. Pastorino, "Numerical assessment concerning a focused microwave diagnostic method for medical applications," IEEE Trans. Antennas Propag., Vol. 48, No. 11, 1815-1830, Nov. 2000.

4. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: potentialities and limitations of a stochastic optimization technique," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1909-1916, Aug. 2004.
doi:10.1109/TMTT.2004.832016

5. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimen-sional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

6. Chen, C.-C., J. T. Johnson, M. Sato, and A. G. Yarovoy, "Special issue on subsurface sensing using ground-penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, Aug. 2007.
doi:10.1109/TGRS.2007.902827

7. Lesselier, D. and J. Bowler, "Special issue on electromagnetic and ultrasonic nondestructive evaluation," Inverse Problems, Vol. 18, No. 6, Dec. 2002.
doi:10.1088/0266-5611/18/6/001

8. Harada, H., D. J. N. Wall, T. Takenaka, and T. Tanaka, "Conjugate gradient method applied to inverse scattering problems," IEEE Trans. Antennas Propag., Vol. 43, 784-792, Aug. 1995.
doi:10.1109/8.402197

9. Ferraye, R., J. Y. Dauvignac, and C. Pichot, "Reconstruction of complex and multiple shape object contours using a level set method," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 153-181, 2003.
doi:10.1163/156939303322235770

10. Dorn., O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Probl., Vol. 22, No. 4, Aug. 2006.
doi:10.1088/0266-5611/22/4/R01

11. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin Heidelberg, 1998.

12. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1697-1708, Jul. 2000.
doi:10.1109/36.851968

13. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 5, 1761-1776, May 2005.
doi:10.1109/TMTT.2005.847068

14. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 538-548, Mar. 2007.
doi:10.1109/TAP.2007.891568

15. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Probl., Vol. 25, No. 12, 1-41, Dec. 2009.
doi:10.1088/0266-5611/25/12/123003

16., Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of the art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.

17. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for imaging purposes," Inverse Probl., Vol. 25, No. 5, 1-25, May 2009.
doi:10.1088/0266-5611/25/5/055004

18. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 1, 42-49, Jan. 2010.
doi:10.1109/TGRS.2009.2025122

19. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 4, 1162-1173, Apr. 2003.
doi:10.1109/TMTT.2003.809677

20. Caorsi, S., M. Donelli, and A. Massa, "Detection,location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microwave Theory Tech., Vol. 52, 1217-1228, Apr. 2004.
doi:10.1109/TMTT.2004.825699

21. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propag., Vol. 37, 918-926, Jul. 1989.

22. Mojabi, P. and J. LoVetri, "Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2658-2665, Sep. 2009.
doi:10.1109/TAP.2009.2027161

23. Bozza, G., C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, "Short-range imagebased method for the inspection of strong scatterers using microwaves," IEEE Trans. Instrum. Meas., Vol. 56, No. 4, 1181-1188, Aug. 2007.
doi:10.1109/TIM.2007.900127

24. Oliveri, G., G. Bozza, A. Massa, and M. Pastorino, "Iterative multi scaling-enhanced inexact Newton-method for microwave imaging," Proc. 2010 IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto (Canada), Jul. 11-17, 2010.

25. Bozza, G., L. Lizzi, A. Massa, G. Oliveri, and M. Pastorino, "An iterative multi-scaling scheme for the electromagnetic imaging of separated scatterers by the Inexact-Newton method," Proc. of the 2010 IEEE International Conference on Imaging Systems and Techniques (IST), 85-89, Thessaloniki, Greece, Jul. 1-2, 2010.

26. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 334-341, May 1965.
doi:10.1109/TAP.1965.1138427

27. Landweber, L., "An iteration formula for Fredholm integral equations of the first kind," American Journal of Mathematics, Vol. 73, No. 3, 615-624, Jul. 1951.
doi:10.2307/2372313