Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-30
Analysis of Reflection Gratings by Means of a Matrix Method Approach
By
Progress In Electromagnetics Research, Vol. 118, 167-183, 2011
Abstract
In this work, a matrix method is applied to study the propagation of electromagnetic waves inside a non-slanted reflection grating. The elements of the matrix which characterizes the periodic medium are obtained in terms of Mathieu functions and their derivatives, and the expressions of the efficiencies of reflected and transmitted orders are calculated in terms of the elements of the matrix. In addition the band structure of a general reflection grating is studied with the layer matrix of one single period. The results obtained by this matrix method are firstly compared to the results obtained by Kogelnik's expressions in index-matched media showing good agreement. The comparison is also made for a reflection grating embedded in two media with different refractive indexes, showing good agreement with an FDTD method, but slight differences with respect to Kogelnik's Coupled Wave Theory.
Citation
Jorge Frances Monllor, Cristian Neipp, Andres Marquez Ruiz, Augusto Belendez, and Inmaculada Pascual, "Analysis of Reflection Gratings by Means of a Matrix Method Approach," Progress In Electromagnetics Research, Vol. 118, 167-183, 2011.
doi:10.2528/PIER11050403
References

1. Kogelnik, H., "Coupled wave theory for thick hologram gratings," Bell Labs Tech. J., Vol. 48, No. 9, 2909-2947, 1969.

2. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, No. 7, 811-818, 1981.
doi:10.1364/JOSA.71.000811

3. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of grating diffraction-e-mode polarization and losses," J. Opt. Soc. Am., Vol. 73, No. 4, 451-455, 1983.
doi:10.1364/JOSA.73.000451

4. Moharam, M. G. and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 73, No. 9, 1105-1112, 1983.
doi:10.1364/JOSA.73.001105

5. Moharam, M. G. and T. K. Gaylord, "Analysis and applications of optical diffraction by gratings," Proc. IEEE, Vol. 73, No. 5, 894-937, 1985.
doi:10.1109/PROC.1985.13220

6. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A, Vol. 3, No. 11, 1780-1787, 1986.
doi:10.1364/JOSAA.3.001780

7. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
doi:10.1364/JOSAA.12.001068

8. Kamiya, N., "Rigorous coupled-wave analysis for practical planar dielectric gratings: 1. Thickness-changed holograms and some characteristics of diffraction efficiency," Appl. Optics, Vol. 37, No. 25, 5843-5853, 1998.
doi:10.1364/AO.37.005843

9. Neipp, C., A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, "Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material," Opt. Express, Vol. 11, No. 16, 1835-1843, 2003.
doi:10.1364/OE.11.001835

10. Dansas, P. and N. Paraire, "Fast modeling of photonic bandgap structures by use of a diffraction-grating approach," J. Opt. Soc. Am. A, Vol. 15, No. 6, 1586-1598, 1998.
doi:10.1364/JOSAA.15.001586

11. Chang, N. Y. and C. J. Juo, "Algorithm based on rigorous coupled-wave analysis for diffractive optical element design," J. Opt. Soc. Am. A, Vol. 18, No. 10, 2491-2501, 2001.
doi:10.1364/JOSAA.18.002491

12. Little, B. E. and W. P. Huang, "Coupled-mode theory for optical waveguides," Progress In Electromagnetics Research, Vol. 10, 217-270, 1995.

13. Jarem, J. M., "Rigorous coupled wave theory of anisotropic, azimuthally-inhomogeneous cylindrical systems," Progress In Electromagnetics Research, Vol. 19, 109-127, 1998.
doi:10.2528/PIER97103100

14. Carretero, L., M. Pérez-Molina, P. Acebal, S. Blaya, and A. Fimia, "Matrix method for the study of wave propagation in one-dimensional general media," Opt. Express, Vol. 14, No. 23, 11385-11391, 2006.
doi:10.1364/OE.14.011385

15. Lekner, J., Theory of Reflection of Electromagnetic and Particle Waves, Kluwer Academic Publishers Group, 1987.

16. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Ch. 20, 722-748, Dover Publications, Inc., New York, 1972.

17. Abeles, F., Optics of Thin Films in Advanced Optical Techniques, North-Holland Publishing Co., Amsterdam, 1967.

18. Frenkel, D. and R. Portugal, "Algebraic methods to compute Mathieu functions," J. Phys. A: Math. Gen., Vol. 34, 3541-3351, 2001.
doi:10.1088/0305-4470/34/17/302

19. Vahabi Sani, N., A. Mohammadi, A. Abdipour, and F. M. Ghannouchi, "Analysis of multiport receivers using FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 635-643, 2009.
doi:10.1163/156939309788019921

20. Silva, A. O., R. Bertholdo, M. G. Chiavetto, B.-H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, "Comparative analysis between experimental characterization results and numerical FDTD modeling of self-assembled photonic crystals," Progress In Electromagnetics Research B, Vol. 23, No. 19, 329-342, 2010.
doi:10.2528/PIERB10060404

21. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, IEEE Press Editorial Board, 2000.

22. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

23. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1996.

24. Taflove, A., Computational Electrodynamics: The Finite-di®erence Time-domain Method, Artech House Publishers, 1995.

25. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

26. Sullivan, D. M., "A simplified PML for use with the FDTD method," Microwave and Guided Wave Letters IEEE, Vol. 6, No. 2, 97-99, 1996.
doi:10.1109/75.482001

27. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.

28. Pérez-Ocón, F., J. R. Jiménez, and A. M. Pozo, "Exponential discretization of the perfectly matched layer (PML) absorbing boundary condition simulation in FDTD 3D ," Optik, Vol. 113, No. 8, 354-360, 2002.
doi:10.1078/0030-4026-00176

29. Francés, J., C. Neipp, M. Pérez-Molina, A. Beléndez, and , "Rigorous interference and diffraction analysis of diffractive optic elements using the finite-difference time-domain method ," Comput. Phys. Commun., Vol. 181, No. 12, 1963-1973, 2010.
doi:10.1016/j.cpc.2010.09.005

30. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of Mur's absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103

31. Zheng, G., B.-Z.Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

32. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914

33. Ni, J., B. Chen, S. L. Zheng, X.-M. Zhang, X.-F. Jin, and H. Chi, "Ultra-wideband bandpass filter with notched band based on electrooptic phase modulator and phase-shift fiber Bragg grating ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 795-802, 2010.
doi:10.1163/156939310791036395

34. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102

35. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704

36. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 94, 197-212, 2009.
doi:10.2528/PIER09061708

37. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407

38. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

39. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

40. Xiao, S.-Q., Z. Shao, and B.-Z. Wang, "Application of the improved matrix type FDTD method for active antenna analysis," Progress In Electromagnetics Research, Vol. 100, 245-263, 2010.
doi:10.2528/PIER09112204

41. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3D BI-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706

42. Tay, W. C. and E. L. Tan, "Implementations of PMC and PEC boundary conditions for efficient fundamental ADI- and LOD-FDTD," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 565-573, 2010.

43. Dai, S.-Y., C. Zhang, and Z.-S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2187-2196, 2009.
doi:10.1163/156939309790109306

44. Li, J., L.-X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

45. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "Gpu accelerated unconditionally stable crank-nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

46. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. W. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
doi:10.2528/PIER10080801