Vol. 32
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-07-24
Reduction of Eletromagnetic Field Radiated by Power Electronic Converters
By
Progress In Electromagnetics Research B, Vol. 32, 389-404, 2011
Abstract
This paper is concerned with a modeling technique of electromagnetic radiations of power electronics circuits during a switching operation of a power electronic component. The electromagnetic radiating loops are formed by PCB traces assumed to be perfect conductor. We complete our study by proposing a technique using passive loops to reduce the magnetic field emitted by the power electronic converter. To achieve this, we propose to solve Maxwell's equations by using the FDTD method where open boundaries, dielectric board and ground plane are taken into consideration. A validation of the model used in our work (solving Maxwell equations using FDTD) is realized by comparison with other theoretical concepts.
Citation
Mohammed Melit, Bachir Nekhoul, Nasserdine Boudjerda, Khalil El Khamlichi Drissi, and Kamal Kerroum, "Reduction of Eletromagnetic Field Radiated by Power Electronic Converters," Progress In Electromagnetics Research B, Vol. 32, 389-404, 2011.
doi:10.2528/PIERB11042404
References

1. Degauque, P. and J. Hamelin, Compatibilité electromagnétisme, bruit et perturbations radioélectriques, BORDAS et C.N.E.T.-E.N.S.T, ISBN 2-04-018807-X, Dunod, Paris, 1990.

2. Melit, M., B. Nekhoul, N. Boudjerda, K. E. K. Drissi, and K. Kerroum, "Investigation of electromagnetic emission in power converters," International Review of Electrical Engineering (I.R.E.E.), Vol. 2, No. 2, 203-216, April 2007.

3. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, May 1966.

4. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

5. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

6. Mur, G., "Absorbing boundary condition for the finite-difference approximation of time-domain electromagnetic field equations," IEEE Trans. Electromag. Compact., Vol. 23, 377-382, November 1981.

7. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits sheen," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 7, 849-857, July 1990.
doi:10.1109/22.55775

8. Piket-May, M., A. Taflove, and J. Baron, "FD-TD modelling of digital signal propagation in 3D circuits with passive and active loads," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 8, 1514-1523, Aug. 1994.
doi:10.1109/22.297814

9. Taflove, A., K. R. Umshankar, and K. S. Yee, "Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens," IEEE Trans. Antennas Propag., Vol. 36, No. 2, 247-257, Feb. 1988.
doi:10.1109/8.1102

10. Melit, M., B. Nekhoul, N. Boudjerda, K. Kerroum, and K. E. K. Drissi, "Computation of electromagnetic field radiated by power electronic converters," EMC Europe 2008, 23-28, Hambourg, Germany, 2008.

11. FEKO, , EM Software & Systems GmbH, Otto-Lilienthal-Strasse 36, D-71034 Böblingen, Allemagne.

12. Taflove, A. and M. E. Brodwine, "Numerical solution of teady-state electromagnetic scattering problems time-difference time dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech., Vol. 23, 623-630, Aug. 1975.
doi:10.1109/TMTT.1975.1128640