Vol. 30
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-22
Resonance Wavelength Dependence and Mode Formation in Gold Nanorod Optical Antennas with Finite Thickness
By
Progress In Electromagnetics Research B, Vol. 30, 337-353, 2011
Abstract
In this paper we analyze the dependence of the resonance wavelength and mode formation of an optical gold nanorod antenna on its geometrical parameters in the wavelength range 500-1400 nm. In particular, we prove that nanoantennas differ from RF counterparts, since the minima and maxima, i.e., nodes and anti-nodes, of the resonant modes do not go to zero and show very intense peak at the corners due to non-negligible thickness. Moreover, FDTD simulations reveal that the usually considered linear relation between the resonant wavelength and the nanorod length has to be modified when the nanorod thickness is taken into account.
Citation
Tommaso Dattoma, Marco Grande, Roberto Marani, Giuseppe Morea, Valeria Marrocco, and Antonella D'Orazio, "Resonance Wavelength Dependence and Mode Formation in Gold Nanorod Optical Antennas with Finite Thickness," Progress In Electromagnetics Research B, Vol. 30, 337-353, 2011.
doi:10.2528/PIERB11042107
References

1. Novotny, L. and N. van Hulst, "Antennas for light," Nature Photonics, Vol. 5, 83-90, 2011.
doi:10.1038/nphoton.2010.237

2. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," Advances in Optics and Photonics, Vol. 1, 438-483, 2009.
doi:10.1364/AOP.1.000438

3. Park, Q.-H., "Optical antennas and plasmonics," Contemporary Physics, Vol. 50, No. 2, 407-423, 2009.
doi:10.1080/00107510902745611

4. Devilez, A., B. Stout, and N. Bonod, "Mode-balancing far-field Mode-balancing far-field," Phys. Rev. B, Vol. 81, 245128, 2010.
doi:10.1103/PhysRevB.81.245128

5. Marrocco, V., M. A. Vincenti, M. Grande, G. Calµo, V. Petruzzelli, F. Prudenzano, and A. D'Orazio , "Field localization in Bragg waveguide assisted by metal layers," J. of Optical Society of America B, Vol. 27, No. 4, 703-707, 2010.
doi:10.1364/JOSAB.27.000703

6. Novotny, L. and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Ann. Rev. Phys. Chem., Vol. 57, 303-331, 2006.
doi:10.1146/annurev.physchem.56.092503.141236

7. Farahani, J. N., D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett., Vol. 95, No. 1, 017402, 2005.
doi:10.1103/PhysRevLett.95.017402

8. Taminiau, T. H., R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Letters, Vol. 7, No. 1, 28-33, 2007.
doi:10.1021/nl061726h

9. Krazinski, B. E., J. Radecki, and H. Radecka, "Surface plasmon resonance based biosensors for exploring the influence of alkaloids on aggregation of amyloid-β peptide," Sensors, Vol. 11, 4030-4042, 2011.
doi:10.3390/s110404030

10. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nature Materials, Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162

11. Cao, L., J. S. Park, P. Fan, B. Clemens, and M. L. Brongersm, "Resonant Germanium nanoantenna photodetectors," Nano Letters, Vol. 10, 1229-1233, 2010.
doi:10.1021/nl9037278

12. Wu, W., A. Bonakdar, and H. Mohseni, "Plasmonic enhanced quantum well infrared photodetector with high detectivity," Applied Physics Letters, Vol. 96, 161107, 2010.
doi:10.1063/1.3419885

13. Cubukcu, E., E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Applied Physics Letters, Vol. 89, 093120, 2006.
doi:10.1063/1.2339286

14. Dey, D., J. Kohoutek, R. M. Gelfand, A. Bonakdar, and H. Mohseni, "Composite nano-antenna integrated with quantum cascade laser ," IEEE Photonics Technology Letters, Vol. 22, No. 21, 1580-1582, 2010.
doi:10.1109/LPT.2010.2073459

15. Gao, H., K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.
doi:10.2528/PIER09111607

16. Pillai, S. and M. A. Green, "Plasmonics for photovoltaics applications," Solar Energy Materials & Solar Cells, Vol. 94, 1481-1486, 2010.
doi:10.1016/j.solmat.2010.02.046

17. Marrocco, V., R. Marani, M. Grande, G. Morea, G. Calµo, V. Petruzzelli, and A. D'Orazio, "Modification of the scattering of silver nanoparticles induced by Fabry-Perot resonances rising from a finite Si layer," Journal of Optics, Vol. 13, 015004, 2011.
doi:10.1088/2040-8978/13/1/015004

18. Marrocco, V., M. A. Vincenti, V. Petruzzelli, F. Prudenzano, and A. D'Orazio , "E±cient plasmonic nanostructures for thin film solar cells," Photonics for Solar Energy Systems III, Proc. of SPIE, Vol. 7725, 2010.
doi:10.1117/12.862873

19. Fumeaux, C., J. Alda, and G. D. Boreman, "Lithographic antennas at visible frequencies," Optics Letters, Vol. 24, No. 22, 1629-1631, 1999.
doi:10.1364/OL.24.001629

20. Simon, J. and F. J. Gonzales, "Nanoantennas for polarization Nanoantennas for polarization," Electronics Letters, Vol. 47, No. 2, 120-121, 2011.
doi:10.1049/el.2010.2521

21. Taminiau, T. H., F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nature Photonics, Vol. 2, 234-237, 2008.
doi:10.1038/nphoton.2008.32

22. Schuck, P. J., D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett., Vol. 94, 017402, 2005.
doi:10.1103/PhysRevLett.94.017402

23. Alu, A. and N. Engheta, "Hertzian plasmonic nanodimer as an e±cient optical nanoantenna," Phys. Rev. B, Vol. 78, 195111, 2008.
doi:10.1103/PhysRevB.78.195111

24. Bryant, G. W., F. J. G. de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano Letters, Vol. 8, 631-636, 2008.
doi:10.1021/nl073042v

25. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photonics, Vol. 4, 312-315, 2010.
doi:10.1038/nphoton.2010.34

26. Hofmann, H. F., T. Kosako, and Y. Kadoya, "Design parameters for a nanooptical Yagi-Uda antenna," New J. Phys., Vol. 9, 217, 2007.
doi:10.1088/1367-2630/9/7/217

27. Li, J., A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B, Vol. 76, 245403, 2007.
doi:10.1103/PhysRevB.76.245403

28. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. MÄullen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon., Vol. 3, 654-657, 2009.
doi:10.1038/nphoton.2009.187

29. Guo, H., P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, "Optical resonances of bowtie slot antennas and their geometry and material dependence," Optics Express, Vol. 16, 7756-7766, 2008.
doi:10.1364/OE.16.007756

30. Kuehn, S., U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett., Vol. 97, 017402, 2006.
doi:10.1103/PhysRevLett.97.017402

31. Bharadwaj, P. and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express, Vol. 15, 14266-14274, 2007.
doi:10.1364/OE.15.014266

32. Gonzalez, F. J. and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Physics & Technology, Vol. 46, No. 5, 418-428, 2005.
doi:10.1016/j.infrared.2004.09.002

33. Fischer, H. and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express, Vol. 16, No. 12, 9144-9154, 2008.
doi:10.1364/OE.16.009144

34. Schuck, P., D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett., Vol. 94, 017402, 2005.
doi:10.1103/PhysRevLett.94.017402

35. Biagioni, P., J. S. Huang, L. Du, M. Finazzi, and B. Hecht, "Cross resonant optical antenna," Phys. Rev. Lett., Vol. 102, 256801, 2009.
doi:10.1103/PhysRevLett.102.256801

36. Centeno, A., J. Breeze, B. Ahmed, H. Reehal, and N. Alford, "Scattering of light into silicon by spherical and hemispherical silver nanoparticles," Optics Letters, Vol. 35, No. 1, 75-78, 2010.
doi:10.1364/OL.35.000076

37. Centeno, A., F. Xie, and N. Alford, "Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles," J. Opt. Soc. Am B, Vol. 28, No. 2, 325-329, 2011.
doi:10.1364/JOSAB.28.000325

38. Zhang, M., X. Zhou, and Y. Fu, "Plasmonic resonance excited extinction spectra of cross shaped Ag nanoparticles," Plasmonics, Vol. 5, 355-366, 2010.
doi:10.1007/s11468-010-9150-y

39. Marrocco, V., M. A. Vincenti, A. Mongiello, M. De Sario, V. Petruzzelli, F. Prudenzano, and A. D'Orazio, "Gold nanorods in lineary modulated array," Proc. of Metamaterials 2009, 3rd Int. Congr. On Advanced Electromagnetic Materials in Macrowaves and Optics , 2009.

40. Novotny, L., "Effective wavelength scaling for optical antennas," Phys. Rev. Lett., Vol. 98, 266802, 2007.
doi:10.1103/PhysRevLett.98.266802

41. Alu, A. and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett., Vol. 101, 043901, 2008.
doi:10.1103/PhysRevLett.101.043901

42. Locatelli, A., "Analysis of the optical properties of wire antennas with displaced terminals ," Opt. Express, Vol. 18, No. 9, 9504-9510, 2010.
doi:10.1364/OE.18.009504

43. Ginzburg, P. and M. Orenstein, "Plasmonic transmission lines: From micro to nano scale with λ/4 impedance matching," Opt. Express, Vol. 15, 6762-6767, 2007.
doi:10.1364/OE.15.006762

44. Zhao, Y., N. Engheta, and A. Alu, "Effects of shape and loading of optical nanoantennas on its sensitivity and radiation properties," Journal of Optical Society of America B, 2011.

45. Balanis, C., Antenna Theory: Analysis and Design, John Wiley and Sons, Inc., 1996.

46. Bean, J. A., B. A. Slovick, and G. D. Boreman, "Influence of substrate con¯guration on the angular response pattern of infrared antennas," Opt. Express, Vol. 18, No. 21, 21705-21713, 2010.
doi:10.1364/OE.18.021705

47. McMahon, J. M., , 2009.
doi:http: www.thecomputationalphysicist.com

48. Veronis, G. and S. Fan, "Subwavelength plasmonic waveguide structures based on slots in thin metal films," Proc. of SPIE, Vol. 6123, 2006.

49. Stewart, M. E., N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers , "Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals ," Proc. Nat. Acad. Sci., Vol. 103, 17143, 2006.
doi:10.1073/pnas.0606216103

50. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.

51. Pezzagna, S., J. Brault, M. de Micheli, P. Vennegues, A. D. Wieck, and J. Massies, "GaN, a new material for integrated nonlinear optics," Proc. of ECIO 2007, Apr. 2007.

52. McMahon, J. M., J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, "Tailoring the sensing capabilities of nanohole arrays in gold ¯lms with Rayleigh anomaly-surface plasmon polaritons ," Opt. Express, Vol. 15, 18119, 2007.
doi:10.1364/OE.15.018119

53. Wang, F. and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett., Vol. 97, 206806, 2006.
doi:10.1103/PhysRevLett.97.206806

54. Bozhevolnyi, S. I. and T. Sondergaard, "General properties of slow-plasmon resonant nanostructures: Nanoantennas and resonators ," Opt. Express, Vol. 15, 10869, 2006.

55. Maier, S. A., "Plasmonics: Fundamentals and Applications," Springer Science, 2007.

56. Barnes, W. L., A. Dereux, and T. Ebbesen, "Surface plasmon subwavelength," Optics Nature, Vol. 424, 824, 2003.
doi:10.1038/nature01937

57. Boriskina, S. V. and L. Dal Negro, "Multiple-wavelength plasmonic," Nanoantennas Opt. Lett., Vol. 35, 538, 2010.
doi:10.1364/OL.35.000538

58. Grenuche, P., S. Cherukulappurath, T. H. Taminiau, N. F. Van Hulst, and R. Quidant , "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett., Vol. 101, 116805, 2008.
doi:10.1103/PhysRevLett.101.116805