Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-16
Implementation of the FDTD Method Based on Lorentz-Drude Dispersive Model on GPU for Plasmonics Applications
By
Progress In Electromagnetics Research, Vol. 116, 441-456, 2011
Abstract
We present a three-dimensional finite difference time domain (FDTD) method on graphics processing unit (GPU) for plasmonics applications. For the simulation of plasmonics devices, the Lorentz-Drude (LD) dispersive model is incorporated into Maxwell equations, while the auxiliary differential equation (ADE) technique is applied to the LD model. Our numerical experiments based on typical domain sizes as well as plasmonics environment demonstrate that our implementation of the FDTD method on GPU offers significant speed up as compared to the traditional CPU implementations.
Citation
Kim Huat Lee, Iftikhar Ahmed, Rick Siow Mong Goh, Eng Huat Khoo, Er Ping Li, and Terence Gih Guang Hung, "Implementation of the FDTD Method Based on Lorentz-Drude Dispersive Model on GPU for Plasmonics Applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002
References

1. Swanson, D. G. and W. J. R. Hofer, Microwave Circuit Modeling Using Electromagnetic Field Simulation, Artech House Inc., Norwood, MA, 2003.

2. Ahmed, I., E. H. Khoo, E. P. Li, and R. Mittra, "A hybrid approach for solving coupled Maxwell and Schrödinger equations arising in the simulation of nano-devices," IEEE Antennas and Wireless Component Letters, Vol. 9, 914-916, 2010.
doi:10.1109/LAWP.2010.2076411

3. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, Wiley-IEEE, 1998.

4. Liu, Z. H., E. K. Chua, and K. Y. See, "Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach," Progress In Electromagnetics Research, Vol. 94, 367-382, 2009.
doi:10.2528/PIER09063002

5. Yee, K. S. and Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, "IEEE Trans. Antennas Propag.,", Vol. 14, 302-307, May 1966.

6. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026

7. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544

8. Gaidamauskaite, E. and R. Baronas, "A comparison of finite difference schemes for computational modelling of biosensors," Nonlinear Analysis: Modelling and Control, Vol. 12, 359-369, 2007.

9. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

10. Chen, J., "Application of the nearly perfectly matched layer for seismic wave propagation in 2D homogeneous isotropic media," Geophysical Prospecting, 2011, doi: 10.1111/j.1365-2478.2011.00949.x.

11. Ingo, W., "Finite difference time-domain simulation of electro-magnetic fields and microwave circuits," International Journal of Numerical Modelling, Vol. 5, 163-182.

12. Seo, M., G. H. Song, et al. "Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers," Opt. Express, Vol. 13, 9645-9651, 2005.
doi:10.1364/OPEX.13.009645

13. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

14. Maxfield, C., The Design Warrior's Guide to FPGAs, Elsevier, 2004.

15. Elsherbeni, A. Z. and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, SciTech Pub., 2009.

16. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 756-759, 2010.
doi:10.1109/LAWP.2010.2060181

17. Savioja, L., "Real-time 3D finite-difference time-domain simulation of low and mid frequency room acoustics," Proc. of the 13th Int. Conference on Digital Audio E®ects (DAFx-10), Graz, Austria, September 6-10, 2010.

18. Chen, S., S. Dong, and X.-L. Wang, "GPU-based accelerated FDTD simulations for double negative (DNG) materials applications," International conference on Microwave and Millimeter Wave Technology (ICMMT) , 839-841, 2010.
doi:10.1109/ICMMT.2010.5525091

19. Shams, R. and P. Sadeghi, "On optimization of finite-difference time-domain (FDTD) computation on heterogeneous and GPU clusters," J. Parallel Distrib. Comput., 2010.

20. Zainud-Deen, S. H., E. Hassan, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using GPU based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703

21. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer-Verlag, 2007.

22. Ahmed, I., C. E. Png, E. P. Li, and R. Vahldieck, "Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure," Opt. Express, Vol. 17, 337-345, 2009.
doi:10.1364/OE.17.000337

23. Shalaev, V. M. and S. Kawata, Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics), Elsevier, 2007.

24. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term in FDTD," IEEE Micro. Guided Wave Lett., Vol. 7, No. 5, May 1997.

25. Baumann, D., C. Fumeaux, C. Hafner, and E. P. Li, "A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies," Opt. Express, Vol. 17, No. 17, 15186-15200, August 2009.
doi:10.1364/OE.17.015186

26. Shibayama, J., A. R. Nomura Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices," IEEE Journal of Quantum Electronics, Vol. 46, No. 1, 40-49, 2010.
doi:10.1109/JQE.2009.2024328

27. Zhang, Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

28. Wei, B., S.-Q. Zhang, Y.-H Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306

29. Mur, G., "Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equations," IEEE Transaction on Electromagnetic Compatibility, Vol. 23, No. 4, 337-382, November 1981.

30. Vial, A., A. S. Grimault, D. Macias, D. Barchiesi, and M. D. Chapelle, "Improved analytical fit of gold dispersionApplication to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B, Vol. 71, No. 8, 085416, February 2005.
doi:10.1103/PhysRevB.71.085416

31. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "Gpu accelerated unconditionally stable crank-nicolson FDTD method for the analysis of three-dimensional microwave circuits ," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606