Vol. 116
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-03
Artificial Magnetic Properties of Dielectric Metamaterials in Terms of Effective Circuit Model
By
Progress In Electromagnetics Research, Vol. 116, 159-170, 2011
Abstract
An effective series RLC model for the electromagnetic response of weakly absorbing dielectric sphere near the first magnetic dipole resonance was developed, and the effective magnetic properties of Mie resonance-based dielectric metamaterials were obtained in terms of this model. In comparison with traditional effective medium theory such as extended Maxwell-Garnett (EMG) theory based on Mie model, this approach is more intuitive and can give an analytical dependence of the magnetic properties of the composite on the electromagnetic and geometric parameters of the constituting dielectric particles.
Citation
Lingyun Liu, Jingbo Sun, Xiaojian Fu, Ji Zhou, Qian Zhao, Bo Fu, Jiaping Liao, and Didier Lippens, "Artificial Magnetic Properties of Dielectric Metamaterials in Terms of Effective Circuit Model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.
doi:10.2528/PIER11033004
References

1. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, 2005.
doi:10.1088/0034-4885/68/2/R06

2. Zhao, Q., J. Zhou, F. Zhang, and D. Lippens, "Mie resonance based dielectric metamaterial," Materials Today, Vol. 12, 60-69, 2009.
doi:10.1016/S1369-7021(09)70318-9

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Gorkunov, M., M. Lapine, E. Shamonina, and K. H. Ringhofer, "Effective magnetic properties of a composite material with circular conductive elements ," Eur. Phys. J. B, Vol. 28, 263-269, 2002.
doi:10.1140/epjb/e2002-00228-4

7. Enkrich, C., M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett., Vol. 95, 203-901, 2005.
doi:10.1103/PhysRevLett.95.203901

8. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science, Vol. 306, 1351-1354, 2004.
doi:10.1126/science.1105371

9. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231, 2005.
doi:10.2528/PIER04051201

10. Chen, H., L. X. Ran, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
doi:10.2528/PIER06112003

11. Dolling, G., C. Enkrich, and M. Wegener, "Low-loss negative-index metamaterial at telecommunication wavelengths," Science, Vol. 312, 892-894, 2006.
doi:10.1126/science.1126021

12. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114

13. Marqués, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bian-isotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, 144440, 2002.
doi:10.1103/PhysRevB.65.144440

14. Chen, H., L. Ran, and J. Huangfu, "Equivalent circuit model for left-handed metamaterials," J. Appl. Phys., Vol. 100, 024915, 2006.
doi:10.1063/1.2219986

15. O'Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys.: Condens. Matter., Vol. 14, 4035-4044, 2002.
doi:10.1088/0953-8984/14/15/317

16. Wang, R., J. Zhou, C.-Q. Sun, L. Kang, Q. Zhao, and J.-B. Sun, "Lefted-handed materials based on crystal lattice vibration," Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009.
doi:10.2528/PIERL09070807

17. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, 043102, 200.
doi:10.1063/1.2173309

18. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencie ," Phys. Rev. B, Vol. 73, 045105, 2006.
doi:10.1103/PhysRevB.73.045105

19. Yannopapas, V. and N. V. Vitanov, "Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength ," Phys. Rev. B, Vol. 74, 193304, 2006.
doi:10.1103/PhysRevB.74.193304

20. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

21. Doyle, W. T., "Optical properties of a suspension of metal spheres," Phys. Rev. B, Vol. 39, 9852-9858, 1989.
doi:10.1103/PhysRevB.39.9852

22. Grimes, C. A. and D. M. Grimes, "Permeability and permittivity spectra of grannular materials," Phys. Rev. B, Vol. 43, 10780-10788, 1991.
doi:10.1103/PhysRevB.43.10780

23. Ruppin, R., "Evaluation of extended Maxwell-Garnett theories," Opt. Commun., Vol. 182, 273-279, 2000.
doi:10.1016/S0030-4018(00)00825-7

24. Videen, G. and W. S. Bickel, "Light-scattering resonances in small spheres," Phys. Rev. A, Vol. 45, 6008-6012, 1992.
doi:10.1103/PhysRevA.45.6008

25. Chen, X., T. M. Grzegorczyk, B. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

26. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

27. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters," J. Opt. Soc. Am. B, Vol. 27, 1083-1091, 2010.
doi:10.1364/JOSAB.27.001083

28. Peng, L., L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2010.
doi:10.1103/PhysRevLett.98.157403