Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-03
Optical Antireflection of a Medium by Nanostructural Layers
By
Progress In Electromagnetics Research B, Vol. 31, 45-66, 2011
Abstract
This work examines reflection of a light from a semi-infinite medium which is modified with an ordered monolayer of spherical nanoparticles placed on or under its surface. We derive analytical expressions for the electric fields within and outside such structures and verify them with help of strict numerical simulations. We show that nanoparticles layer acts as an imaginary zero-thickness surface having complicated non-Fresnel reflection coefficients with wavelength dependent phase shift. It is shown that such monolayers may reduce reflection relative to reflection from a pure substrate surface. We derive and analyse a zero-reflection condition in the simple intuitive form. It is shown that a single layer of nanocavities near the medium-vacuum interface may increase the transparency of a dielectric medium to values close to 100% in a wide wavelength range.
Citation
Alexander Sergeevich Shalin, "Optical Antireflection of a Medium by Nanostructural Layers," Progress In Electromagnetics Research B, Vol. 31, 45-66, 2011.
doi:10.2528/PIERB11032509
References

1. Visimax Technologies, Twinsburg, , Ohio, http://visimaxtechno-logies.com/anti-reflection-visiclear/.
doi:10.1126/science.283.5401.520

2. Walheim, S., E. Schaffer, J. Mlynek, and U. Steiner, "Surface-induced structure formation of polymer blends on patterned substrates," Science, Vol. 283, 520, 1999.
doi:10.1088/0957-4484/8/2/002

3. Lalanne, P. and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology, Vol. 8, 53.

4. Koenig, G. A. and N. G. Niejelow, "Ultra low residual reflection, low stress lens coating,", United States Patent, No. US 7311938 B2, Dec. 25, 2007 .
doi:10.1038/nnano.2007.389

5. Huang, Y.-F., S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, and K.-H. Che, "Improved broadband and quasi-omnidirectional antire°ection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, 770, 2007.
doi:10.1039/b821967b

6. Li, Y., J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, "Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings," J. Mater. Chem., Vol. 19, 1806, 2009.
doi:10.1063/1.2767990

7. Wang, S., X. Z. Yu, and and H. T. Fan, "Simple lithographic approach for subwavelength structure antireflectio ," Appl. Phys. Lett., Vol. 91, 061105, 2007.

8. Gombert, A., W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, "Subwavelength-structured antireflective surfaces on glass," Appl. Phys. Lett., Vol. 351, 73, 1999.
doi:10.1002/adma.200601438

9. Wu, Z., J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, "Deformable antireflection coatings from polymer and nanoparticle multilayers," Adv. Mater., Vol. 18, 2699, 2006.
doi:10.1002/adma.200305617

10. Koo, H. Y., D. K. Yi, S. J. Yoo, and D.-Y. Kim, "Snowman-like array of colloidal dimers for antireflecting surfaces," Adv. Mater., Vol. 16, 274, 2004.

11. Ramm, A. G., "Electromagnetic wave scattering by a thin layer in which many small particles are embedded," Progress In Electromagnetics Research Letters, Vol. 19, 147-154, 2010.

12. Xi, J.-Q., F. M. Schubert, J. K. Kim, et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photonics, Vol. 1, No. 176, 2007.

13. Garcia-Vidal, F. J., "Metamaterials-Towards the dark side," Nature Photonics, Vol. 2, No. 215, 2008.
doi:10.1070/QE2009v039n12ABEH014143

14. Shalin, A. S. and S. G. Moiseev, "Controlling interface reflectance by a monolayer of nanoparticles," Quantum Electron., Vol. 39, 1175, 2009.
doi:10.1134/S106377610710010X

15. Gadomskii, O. N. and A. S. Shalin, "Effect of optical blooming of a nanocrystal monolayer and the interface between two media," Journal of Experimental and Theoretical Physics, Vol. 105, No. 4, 761, 2007.

16. Yanagishita, T., K. Nishio, and H. Masuda, "Anti-reflection structures on lenses by nanoimprinting," Using Ordered Anodic Porous Alumina Appl. Phys. Express, Vol. 2, 022001, 2009.

17. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, Cambridge University Press, Cambridge, 2002.
doi:10.1016/0040-6090(93)90468-5

18. Haarmans, M. T. and D. Bedeaux, "The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate," Thin Solid Films, Vol. 224, 117, 1993.
doi:10.1002/andp.19083300302

19. Mie, G., "Beitrage zur Optik truber medien, speziell kolloidaler metallosungen," Ann. Phys., Vol. 25, 377, 1908.
doi:10.1134/S0021364009160073

20. Shalin, A. S., "Effect of the absolute transparency of an ordered nanocomposite," JETP Lett., Vol. 90, 257, 2009.

21. Shalin, A. S., "Broadband blooming of a medium modified by an incorporated layer of nanocavities," JETP Lett., Vol. 91, 637, 2010.

22. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Acad. Press, New York, 1995.

23. Fleming, A. H. J., "A finite element method for composite scatterers," Progress In Electromagnetics Research, Vol. 2, 69-112, 1990.

24. Zhai, Y.-B. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.

25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, Artech House, Boston, 2000.
doi:10.1364/JOSAA.16.001131

26. Prather, D. W. and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," Opt. Soc. Am. A, Vol. 16, 1131, 1999.
doi:10.2528/PIER09061102

27. Lin, Z., X. Zhang, and G. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.1364/OPEX.13.002668

28. Curry, A., G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy," Opt. Express, Vol. 13, 2668, 2005.
doi:10.1134/S0030400X09060228

29. Shalin, A. S. and S. G. Moiseev, "Optical properties of nanostructured layers on the surface of an underlying medium," Optics and Spectroscopy, Vol. 106, No. 6, 916, 2009.

30. Born, M. and E. Wolf, Principles of Optics, Pergamon, Pergamon, Oxford, 1969.
doi:10.2528/PIER08092803

31. Zhang, G.-H., M. Xia, and C. H. Chan, "Time domain integral equation approach for analysis of transient responses by metallic-dielectric composite bodies," Progress In Electromagnetics Research, Vol. 87, 1-14, 2008.
doi:10.2528/PIER04071301

32. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.

33. COMSOL Multiphysics 3.4, COMSOL AB, , Stockholm, Sweden; http://www.comsol.com/products/multiphysics/.

34. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
doi:10.1103/PhysRevB.71.134304

35. Evlyukhin, A. B. and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B., Vol. 71, 134304, 2005.
doi:10.1134/S0031918X06050024

36. Gadomskii, O. N. and A. S. Shalin, "Optical near-field resonances in the system of interacting nanoparticles," The Physics of Metals and Metallography, Vol. 101, No. 5, 425, 2006.
doi:10.1103/PhysRevB.44.7917

37. Poppe, G. P. M., C. M. J. Wijers, and A. Silfhout, "Ir spectroscopy of CO physisorbed on NaCl (100): Microscopic treatment," Phys. Rev. B, Vol. 44, No. 15, 7917-7929, 1991.
doi:10.1103/PhysRevB.46.7605

38. Wijers, C. M. J. and G. P. M. Poppe, "Microscopic treatment of the angular dependence of surface induced optical anisotropy," Phys. Rev. B, Vol. 46, No. 2, 7605-7620, 1992.

39. Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge, 2004.

40. Zaimidoroga, O. A., V. N. Samoilov, and I. E. Protsenko, "The problem of realization of a high refractive index and the optical properties of heterogeneous media," Phys. Part. Nucl., Vol. 33, 52, 2002.

41. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1985.
doi:10.1364/OE.18.013063

42. Song, Y. M., H. J. Choi, J. S. Yu, and Y. T. Lee, "Design of highly transparent glasses with broadband antireflective subwavelength structures," Opt. Express, Vol. 18, No. 12, 13063, 2010.
doi:10.1364/OL.31.000601

43. Xi, J.-Q., J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and J. S. Juneja, "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods," Opt. Lett., Vol. 31, No. 5, 601, 2006.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.