Vol. 23
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-04-20
An Improved Design of Hi-LO Microstrip Lowpass Filter Using Uniplanar Double Spiral Resonant Cells
By
Progress In Electromagnetics Research Letters, Vol. 23, 89-98, 2011
Abstract
A novel microstrip resonator, uniplanar double spiral resonant cell (UDSRC) is analytically investigated to access the controllability of its bandstop property and one hi-lo microstrip lowpass filter using UDSRCs with enhanced frequency selectivity and rejection level is also presented. The equivalent circuit corresponding to each part of UDSRC is initially proposed to describe its special bandstop property with two transmission zeros. Furthermore, analytical theories of each circuit element are introduced and the comparison of the calculated results and the fullwave-simulated ones is done to verify the proposed equivalent circuit and the analytical theories. Both the analytical investigation and parametric analysis indicate that the two transmission zeros can be controlled through tuning the primary geometrical parameters. Thus, the given property is utilized by embedding two different UDSRCs in the feed lines of the reference filter. Both the simulated and measured results indicate that the frequency selectivity and rejection level are improved effectively. The frequency selectivity of the fabricated prototype is about 65.8 dB/GHz while the stopband rejection level is more than 10dB from 2.08 GHz to 6.62 GHz. Compared with the reference filter, the performance is improved greatly while the transversal dimension of the feed line is not increased because UDSRCs are completely embedded in the feed lines.
Citation
Ke Lu, Guang-Ming Wang, Ya-Wei Wang, and Xiong Yin, "An Improved Design of Hi-LO Microstrip Lowpass Filter Using Uniplanar Double Spiral Resonant Cells," Progress In Electromagnetics Research Letters, Vol. 23, 89-98, 2011.
doi:10.2528/PIERL11032112
References

1. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

2. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.
doi:10.1109/22.899965

3. Abdel-Rahman, A. B., A. K. Verma, A. Boutejdar, and A. S. Omar, "Control of bandstop response of Hi-Lo microstrip low-pass filter using slot in ground plane," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1008-1013, Mar. 2004.
doi:10.1109/TMTT.2004.823587

4. Chen, W.-L., G.-M. Wang, and Y.-N. Qi, "Fractal-shaped Hi-Lo microstrip low-pass filters with high passband performance," Microwave and Optical Technology Letters, Vol. 49, No. 10, 2577-2579, Oct. 2007.
doi:10.1002/mop.22774

5. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1462-1468, Apr. 2005.
doi:10.1109/TMTT.2005.845204

6. Kokkinos, T., A. P. Feresidis, and J. C. Vardaxoglou, "On the use of spiral resonators for the design of uniplanar microstrip based left-handed metamaterials," Proc. European Conference on Antennas and Propagation, Nice, France, 2006.

7. Kokkinos, T., A. P. Feresidis, and J. C. Vardaxoglou, "Equivalent circuit of double spiral resonators supporting backward waves," Loughborough Antennas and Propagation Conference, 289-292, Loughborough University of Technology, UK, 2007.

8. Keshavarz, R., M. Movahhedi, A. Hakimi, and A. Abdipour, "A novel broad bandwidth and compact backward coupler with high coupling level," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2–3, 283-293, 2011.
doi:10.1163/156939311794362885

9. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403

10. Abdelaziz, A. F., T.M. Abuelfadl, and O. L. Elsayed, "Realization of composite right/left-handed transmission line using coupled lines," Progress In Electromagnetics Research, Vol. 92, 299-315, 2009.
doi:10.2528/PIER09040305

11. Kokkinos, T. and A. P. Feresidis, "Low-profile folded monopoles with embedded planar metamaterial phase-shifting lines," IEEE Trans. Antennas Propagat., Vol. 57, No. 10, 2997-3008, Oct. 2009.
doi:10.1109/TAP.2009.2028605

12. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propagat., Vol. 55, No. 8, 2258-2267, Aug. 2007.
doi:10.1109/TAP.2007.901950

13. Yue, C. P. and S. S. Wang, "A physical model for planar spiral inductors on silicon," International Electron. Devices Meeting Technical Digest, 155-158, Dec. 1996.
doi:10.1109/IEDM.1996.553144

14. Chi, C.-Y. and G. M. Rebeiz, "Planar microwave and millimeter-wave lumped elements and coupled-line filters using micromachining machining techniques," IEEE Trans. Microw. Theory Tech., Vol. 43, 730-738, Apr. 1995.

15. Wang, J., S. Qu, Z. Xu, H. Ma, Y. Yang, and C. Gu, "A controllable magnetic metamaterial: Split-ring resonator with rotated inner ring," IEEE Trans. Antennas Propagat., Vol. 56, No. 7, 2018-2022, Jul. 2008.
doi:10.1109/TAP.2008.924728