Vol. 18
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-04-13
Arbitrarily Polarized Plane-Wave Diffraction from Semi-Infinite Periodic Grooves and Its Application to Finite Periodic Grooves
By
Progress In Electromagnetics Research M, Vol. 18, 43-54, 2011
Abstract
Arbitrarily polarized plane-wave diffraction equations for semiinfinite periodic rectangular grooves (RG) in a perfectly conducting plane are approximately proposed. To obtain diffraction equations for semi-infinite periodic RG, we utilize an overlapping T-block method as proposed for the analyses of finite and infinite numbers of RG, and the subtraction technique with infinite periodic solutions. The proposed semi-infinite solutions are then applied to finite periodic RG with very large number of diffracting elements. For verification of our approach, we performed numerical computations for finite periodic RG and compared our solutions based on semi-infinite equations with previously published analytic solutions, thus obtaining favorable agreement and proving computational efficiency.
Citation
Yong Heui Cho, "Arbitrarily Polarized Plane-Wave Diffraction from Semi-Infinite Periodic Grooves and Its Application to Finite Periodic Grooves," Progress In Electromagnetics Research M, Vol. 18, 43-54, 2011.
doi:10.2528/PIERM11030111
References

1. Bendickson, J. M., E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, "Guided-mode resonant subwavelength gratings: Effects of finite beams and finite gratings," J. Opt. Soc. Am. A, Vol. 18, No. 6, 1912-1928, 2001.
doi:10.1364/JOSAA.18.001912

2. Wu, S.-D. and E. N. Glytsis, "Finite-number-of-periods holo-graphic gratings with funite-width incident beams: Analysis using the ¯nite-di®erence frequency-domain method," J. Opt. Soc. Am. A, Vol. 19, No. 10, 2018-2029, 2002.
doi:10.1364/JOSAA.19.002018

3. Lin, A. and J. Phillips, "Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms," Sol. Energ. Mat. Sol. C, Vol. 92, No. 12, 1689-1696, 2008.
doi:10.1016/j.solmat.2008.07.021

4. Basha, M. A., S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, "Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane," J. Opt. Soc. Am. A, Vol. 24, No. 6, 1647-1655, 2007.
doi:10.1364/JOSAA.24.001647

5. Scharstein, R. W., J. M. Keen, and D. L. Faircloth, "Two-term Ritz-Galerkin solution for the low frequency scattering by a rectangular trough in a soft ground plane," IEEE Trans. Antennas Propagat., Vol. 56, No. 7, 1993-2001, 2008.
doi:10.1109/TAP.2008.924741

6. Cho, Y. H., "TE scattering from large number of grooves using Green's functions and Floquet modes," 2007 Korea-Japan Micro. Wave Conference (KJMW), 41-44, 2007.
doi:10.1109/KJMW.2007.4402235

7. Cho, Y. H., "Transverse magnetic plane-wave scattering equations for in¯nite and semi-in¯nite rectangular grooves in a conducting plane," IET Proc. --- Microw. Antennas Propag., Vol. 2, No. 7, 704-710, 2008.
doi:10.1049/iet-map:20070251

8. Linton, C. M. and P. A. Martin, "Semi-infinite arrays of isotropic point scatters. A unified approach," SIAM J. Appl. Math., Vol. 64, No. 3, 1035-1056, 2004.
doi:10.1137/S0036139903427891

9. Linton, C. M., R. Porter, and I. Thompson, "Scattering by a semi-infinite periodic array and the excitation of surface waves," SIAM J. Appl. Math., Vol. 67, No. 5, 1233-1258, 2007.
doi:10.1137/060672662

10. Citrin, D. S., Y. Wang, and Z. Zhou, "Far-field optical coupling to semi-infinite metal-nanoparticle chains," J. Opt. Soc. Am. B, Vol. 25, No. 6, 937-944, 2008.
doi:10.1364/JOSAB.25.000937

11. Wasylkiwskyj, W., "Mutual coupling effects in semi-infinite arrays," IEEE Trans. Antennas Propagat., Vol. 21, No. 3, 277-285, 1973.
doi:10.1109/TAP.1973.1140507

12. Fallahi, A. and C. Hafner, "Analysis of semi-infinite periodic structures using a domain reduction technique," J. Opt. Soc. Am. A, Vol. 27, No. 1, 40-49, 2010.
doi:10.1364/JOSAA.27.000040

13. Hills, N. L. and S. N. Karp, "Semi-infinite diffraction gratings --- I," Comm. Pure Appl. Math., Vol. 18, No. 1-2, 203-233, 1965.
doi:10.1002/cpa.3160180119

14. Zheng, J.-P. and K. Kobayashi, "Diffraction by a semi-in¯nite parallel-plate waveguide with sinusoidal wall corrugation: Combined perturbation and Wiener-Hopf analysis," Progress In Electromagnetics Research B, Vol. 13, 75-110, 2009.
doi:10.2528/PIERB08120704

15. Skinner, J. P. and P. J. Collins, "A one-sided version of the Poisson sum formula for semi-infinite array Green's functions," IEEE Trans. Antennas Propagat., Vol. 45, No. 4, 601-607, Apr. 1997.
doi:10.1109/8.564085

16. Capolino, F., M. Albani, S. Maci, and L. B. Felsen, "Frequency-domain Green's function for a planar periodic semi-infinite phased array --- Part I: Truncated Floquet wave formulation," IEEE Trans. Antennas Propagat., Vol. 48, No. 1, 67-74, Jan. 2000.
doi:10.1109/8.827387

17. Polemi, A., A. Toccafondi, and S. Maci, "High-frequency Green's function for a semi-infinite array of electric dipoles on a grounded slab --- Part I: Formulation," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 1667-1677.
doi:10.1109/8.982445