Vol. 115
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-25
Organic-Inorganic RF Composites with Enhanced Permittivity by Nanoparticle Additions
By
Progress In Electromagnetics Research, Vol. 115, 147-157, 2011
Abstract
Organic-inorganic thermoplastic composites offer a cost-effective material choice with tuneable dielectric properties for various telecom components and applications. Typically such composites require substantial loading of inorganics to obtain a feasible level of permittivity at RF frequencies dramatically decreasing mechanical ruggedness and increasing losses. In this paper we demonstrate utilization of nanoparticle phase in BaSrTiO3-polypropylene-graft-poly (styrene-stat-divenylbenzene) composite to enhance the high frequency properties and overcome the problems associated with high filler loading. The effect of nanosize silicon, silver and Al2O3 additives with different volume fractions in complex permittivity was investigated up to 1 GHz. Significant increase in the effective permittivity of the composites with all the additives was observe, especially in the case of the nanosized silver particles where only 2 vol.% addition was able to enhance εr by 52% without increasing the dielectric losses when compared to the reference sample.
Citation
Merja Teirikangas, Jari Juuti, and Heli Jantunen, "Organic-Inorganic RF Composites with Enhanced Permittivity by Nanoparticle Additions," Progress In Electromagnetics Research, Vol. 115, 147-157, 2011.
doi:10.2528/PIER11022105
References

1. Balazs, A. C., T. Emrick, and T. P. Russell, "Nanoparticle polymer composites: Where two small worlds meet," Science, Vol. 314, 1107-1110, 2006.
doi:10.1126/science.1130557

2. Shen, Y., Z. X. Yue, and M. Li, "Enhanced initial permeability and dielectric constant in a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-polymer composite," Adv. Func. Mat., Vol. 15, 1100-1103, 2005.
doi:10.1002/adfm.200500045

3. Dang, Z. M., Y. H. Lin, and C. W. Nan, "Novel ferroelectric polymer composite with high dielectric constants," Adv. Mat., Vol. 15, 1625-1629, 2003.
doi:10.1002/adma.200304911

4. Shen, Y., Y. H. Lin, and C. W. Nan, "High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer," Adv. Mat., Vol. 19, 1418-1422, 2007.
doi:10.1002/adma.200602097

5. Hu, T., J. Juuti, and H. Jantunen, "RF-properties of BST-PPS composites," J. Eur. Ceram. Soc., Vol. 27, 2923-2926, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.027

6. Xiang, F., H. Wang, and X. Yao, "Dielectric properties of SrTiO3/POE flexible composites for microwave applications," J. Eur. Ceram. Soc., Vol. 27, 3093-3097, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.034

7. Xiang, F., H. Wang, M. L. Zhang, and X. Yao, "Frequency-temperature compensation mechanism for bismuth based dielectric/PTFE microwave composites," J. Electroceram., Vol. 22, 221-226, 2009.
doi:10.1007/s10832-007-9368-z

8. Xiang, F., H.Wang, and X. Yao, "Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composite," J. Eur. Ceram. Soc., Vol. 26, 1999-2002, 2006.
doi:10.1016/j.jeurceramsoc.2005.09.048

9. Subodh, G., C. Paviathran, P. Mohanan, and M. T. Sebastian, "PTFE/Sr22Ce2Ti5O16 polymer ceramic composites for electronic packaging applications," J. Eur. Ceram. Soc., Vol. 27, 3039-3044, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.049

10. Tuncer, E., E. Nettelblad, and S. M. Guba·nski, "Non-Debye dielectric relaxation in binary dielectric mixtures (50--50): Randomness and regularity in mixture topology," J. Appl. Phys., Vol. 92, 4612-4624, 2002.
doi:10.1063/1.1505975

11. Perrier, G. and A. Bergeret, "Maxwell-Wagner-Sillars relaxations in polystyrene-glass-bead composites," J. Appl. Phys., Vol. 77, 2651-2658, 1995.
doi:10.1063/1.358731

12. Lin, Y. Q., Y. J. Wu, X. M. Chen, S. P. Gu, J. Tong, and S. Guan, "Dielectric relaxation mechanisms of BiMn2O5 ceramics," J. Appl. Phys., Vol. 105, 1-5, 2009.

13. Pecharroman, C., F. Esteban-Betegon, J. F. Bartolome, S. Lopes-Esteban, and J. S. Moya, "New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant," Adv. Mat., Vol. 13, 1541-1544, 2001.
doi:10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X

14. Rujijanagul, G., S. Jompruan, and A. Chaipanich, "Influence of graphite particle size on electrical properties of modified PZT-polymer composites," Curr. Appl. Phys., Vol. 8, 359-362, 2008.
doi:10.1016/j.cap.2007.10.031

15. George, S., N. I. Santha, and M. T. Sebastian, "Percolation phenomenon in barium samarium titanate-silver composite," J. Phys. Chem. Solids, Vol. 70, 107-111, 2009.
doi:10.1016/j.jpcs.2008.09.015

16. Ramajo, L. A., A. A. Cristóbal, P. M. Botta, J. M. Porto López, M. M. Reboredo, and M. S. Castro, "Dielectric and magnetic response of Fe3O4/epoxy composites," Composites: Part A, Vol. 40, 388-393, 2009.
doi:10.1016/j.compositesa.2008.12.017

17. Adikary, S., H. Chan, C. Choy, B. Sundaravel, and I. Wilson, "Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composite," Comp. Science Tech., Vol. 62, 2161-2167, 2002.
doi:10.1016/S0266-3538(02)00149-5

18. Wu, C. C., Y. C. Chen, C. C. Su, and C.-F. Yang, "The chemical and dielectric properties of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)Osub>3/sub>," Eur. Polymer., Vol. 45, 1442-1447, 2009.
doi:10.1016/j.eurpolymj.2009.02.005

19. Jylha, L. and A. Sihvola, "Equation for the effective permittivity of particle-filled composites for material design application," J. Phys. D App. Phys., Vol. 40, 2007.
doi:10.1088/0022-3727/40/16/032

20. Sa-Gong, G., A. Safari, S. J. Jang, and R. E. Newnham, "Poling flexible piezoelectric composites," Ferroelectrics Lett., Vol. 5, 131-142, 1986.
doi:10.1080/07315178608202472

21. Ryvkina, N., I. Tchmutin, J. Vilcakova, M. Pelíšková, and P. Sáha, "The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: Theoretical modeling and experimental results," Synth. Mat., Vol. 148, 141-146, 2005.
doi:10.1016/j.synthmet.2004.09.028

22. Li, C., E. T. Thostenson, T. W. Chou, C. Li, and E. Thostenson, "Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites," Appl. Phys. Lett., Vol. 91, 1227-1249, 2007.

23. Todd, M. G. and F. G. Shi, "Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents," J. Appl. Phys., Vol. 94, No. 7, 4551-4557, 2003.
doi:10.1063/1.1604961

24. Murugaraj, P., D. Mainwaring, and N. Mora-Huertas, "Dielectric enhancement in polymer-nanoparticle composites through inter-phase polarizability," J. Appl. Phys., Vol. 98, 054304, 2005.
doi:10.1063/1.2034654

25. Vaia, R. and H. Wagner, "Framework for nanocomposites," Materials Today, Vol. 7, No. 11, 32-37, 2004.
doi:10.1016/S1369-7021(04)00506-1