Vol. 29
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-04-08
New Techniques for Increasing Antenna Bandwidth with Impedance Loading
By
Progress In Electromagnetics Research B, Vol. 29, 269-288, 2011
Abstract
New methods are presented for increasing the bandwidth of wire antennas using impedance loading. This paper extends the seminal Wu-King theory of the internal impedance profile that produces travellingwave only current modes on a center-fed dipole antenna. It also presents a numerical optimization methodology based on Central Force Optimization, a new deterministic multidimensional search and optimization metaheuristic useful for problems in applied electromagnetics. A CFOoptimized loaded monopole antenna is described in detail and compared to the same structure loaded with a fractional Wu-King profile. The CFO monopole generally performs better than other designs using either the full or fractional Wu-King profiles or the extended Wu-King profiles. The methods described in this paper should be useful in any wire antenna design that utilizes impedance loading to increase bandwidth.
Citation
Richard Formato, "New Techniques for Increasing Antenna Bandwidth with Impedance Loading," Progress In Electromagnetics Research B, Vol. 29, 269-288, 2011.
doi:10.2528/PIERB11021904
References

1. Willoughby, E. O., "An improved wide band aerial," Patent Specification, No. 162009, Commonwealth of Australia, Aug. 13, 1953.

2. Altshuler, E. E., "The traveling-wave linear antenna," IRE Transactions on Antennas and Propagation, 324, Jul. 1961.

3. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Transactions on Antennas and Propagation, 369-373, May 1965, (see also Corrections, IEEE Trans. Ant. Prop., 998, Nov. 1965).
doi:10.1109/TAP.1965.1138429

4. Kanda, M., "Time domain sensors for radiated impulsive measurements," IEEE Transactions on Antennas and Propagation, 438, May 1983.
doi:10.1109/TAP.1983.1143057

5. Rama Rao, B. and P. S. Debroux, "Wideband HF monopole antennas with tapered resistivity loading," IEEE Military Communications Conference, Monterey, CA, 1Sep. 30--Oct. 3, 990.

6. Rama Rao, B., "Optimized tapered resistivity profiles for wideband HF monopole antenna," IEEE Ant. & Prop. Soc. Symposium, London, Ontario, Canada, 1991.

7. Little, L., O. Ramabi, and R. Mittra, "Combined tapered resistive and inductive loading to increase the bandwidth of small antennas," Proceedings of the IEEE Ant. & Prop. Soc. Symposium, 2089, Jul. 1992.

8. Lestari, A. A., E. Bharata, A. B. Suksmono, A. Kurniawan, A. G. Yarovoy, and L. P. Ligthart, "A modified bow-tie antenna for improved pulse radiation," IEEE Transactions on Antennas and Propagation, 2184-2192, Jul. 2010.

9. King, R. W. P., G. J. Fikioris, and R. B. Mack, Cylindrical Antennas and Arrays, Cambridge University Press, 2002.
doi:10.1017/CBO9780511541100

10. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

11. Valagiannopoulos, C. A. and G. Fikioris, "On choosing kernel and feed when analyzing dipole antennas via integral equations," 10th International Conference on Mathematical Methods in Electromagnetic Theory, Conference Proceedings, 257-259, Dniepropetrovsk, Ukraine, Sep. 14--17, 2004.

12. Fikioris, G. and C. A. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
doi:10.2528/PIER05031701

13. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ninth Printing, 231, US Department of Commerce, Nov. 1970.

14. Formato, R. A., "Loading profiles for wideband antennas," Communications Quarterly Magazine, Vol. 27, Summer 1997, (see also Corrections, 93, Fall 1997).

15. Formato, R. A., "Wideband antennas," Electronics World Magazine, 202, Mar. 1997.

16. Formato, R. A., "Maximizing the bandwidth of monopole antennas," NARTE News, Vol. 11, No. 4, 5, National Association of Radio and Telecommunications Engineers, Inc., Oct. 1993--Jan. 1994.

17. (i) 4nec2 Antenna Modeling Freeware by A. Voors, , available online at http://home.ict.nl/~arivoors/.(ii) Unofficial Numerical Electromagnetic Code (NEC) Archives, online at http://www.si-list.net/swindex.html.

18. Burke, G. J. and A. J. Poggio, Numerical electromagnetics code (NEC) --- Method of moments, Parts I, II and III, UCID-19934, Lawrence Livermore National Laboratory, Livermore, California, USA, Jan. 1981.

19. Burke, G. J., Numerical electromagnetics code --- NEC-4, method of moments, Part I: User's manual and Part II: Program description --- Theory, UCRL-MA-109338, Lawrence Livermore National Laboratory, Livermore, California, USA, Jan. 1992, https://ipo.llnl.gov/technology/software/softwaretitles/nec.php.

20. Formato, R. A., "Parameter-free deterministic global search with simplified central force optimization," Proceedings of the 6th International Conference on Advanced Intelligent Computing Theories and Applications: Intelligent Computiing, 309-318, Springer-Verlag, Berlin, Heidelberg, 2010.

21. Cross, M. W., E. Merulla, and R. A. Formato, High-performance indoor VHF-UHF antennas: Technology update report, National Association of Broadcasters (NAB), FASTROAD (Flexible Advanced Services for Television and Radio On All Devices), Technology Advocacy Program, May 15, 2010, http://www.nabfastroad.org/NABHighperformanceIndoorTVantennaRpt.pdf.

22. Qubati, G. M., N. I. Dib, and R. A. Formato, "Antenna benchmark performance and array synthesis using central force optimization," IET (UK) Microwaves, Antennas & Propagation, Vol. 4, No. 5, 583-592, 2010, doi: 10.1049/iet-map.2009.0147.
doi:10.1049/iet-map.2009.0147

23. Formato, R. A., "Improved CFO algorithm for antenna optimization," Progress In Electromagnetics Research B, 405-425, 2010, http://www.jpier.org/pierb/pier.php?paper=09112309, doi:10.2528/PIERB09112309.
doi:10.2528/PIERB09112309

24. Formato, R. A., "Central force optimization and NEOs --- First cousins?," Journal of Multiple-valued Logic and Soft Computing, Vol. 16, 547-565, 2010.

25. Formato, R. A., "Central force optimization applied to the PBM suite of antenna benchmarks,", 2010, arXiv:1003.0221, http://arXiv.org.

26. Xie, L., J. Zeng, and R. A. Formato, "Convergence analysis and performance of the extended artificial physics optimization algorithm," Applied Mathematics and Computation, 2011, online at http://dx.doi.org/10.1016/j.amc.2011.02.062.

27. Formato, R. A., "Central force optimisation: A new gradient-like metaheuristic for multidimensional search and optimisation," Int. J. Bio-inspired Computation, Vol. 1, No. 4, 217-238, 2009, doi: 10.1504/IJBIC.2009.024721.
doi:10.1504/IJBIC.2009.024721

28. Formato, R. A., "Central force optimization: A new deterministic gradient-like optimization metaheuristic," Journal of the Operations Research Society of India, Vol. 46, No. 1, 25-51, 2009, doi: 10.1007/s12597-009-0003-4.

29. Formato, R. A., "Central force optimization: A new computational framework for multidimensional search and optimization," Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), N. Krasnogor, G. Nicosia, M. Pavone, and D. Pelta, Eds., Vol. 129, Springer-Verlag, Heidelberg, 2008.

30. Formato, R. A., "Central force optimization: A new metaheuristic with applications in applied electromagnetics," Progress In Electromagnetics Research, Vol. 77, 425-491, 2007.
doi:10.2528/PIER07082403

31. Formato, R. A., "On the utility of directional information for repositioning errant probes in central force optimization,", 2010, arXiv:1005.5490, http://arXiv.org.

32. Formato, R. A., "Pseudorandomness in central force optimization,", 2010, arXiv:1001.0317, http://arXiv.org.

33. Formato, R. A., "Are near earth objects the key to optimization theory?,", 2009, arXiv:0912.1394, http://arXiv.org.

34. Formato, R. A., "Issues in antenna optimization --- A monopole case study,", Mar. 2011, http://arXiv.org/abs/1103.5629.