Vol. 114
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-10
Subwavelength Array of Planar Triangle Monopoles with Cross Slots Based on Far-Field Time Reversal
By
Progress In Electromagnetics Research, Vol. 114, 429-441, 2011
Abstract
A subwavelength array of planar triangle monopole antennas is proposed and discussed in this paper. Each element of the array is etched with many cross slots which bring no effects to the element's performances of voltage standing wave ratio and far-field radiation patterns. An important property of this antenna is that if multiple such planar antennas are placed face to face, the proposed array can perform time-reversal far-field focusing with a super-resolution as small as one twentieth of a wavelength. The proposed subwavelength array is easy to design and convenient for integration.
Citation
Guang-Ding Ge, Duo Wang, and Bing-Zhong Wang, "Subwavelength Array of Planar Triangle Monopoles with Cross Slots Based on Far-Field Time Reversal," Progress In Electromagnetics Research, Vol. 114, 429-441, 2011.
doi:10.2528/PIER11021701
References

1. Bellomo, L., S. Pioch, M. Saillard, and E. Spano, "Time reversal experiments in the microwave range: Description of the radar and results," Progress In Electromagnetics Research, Vol. 104, 427-448, 2010.
doi:10.2528/PIER10030102

2. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

3. Dmitriev, V., "Space-time reversal symmetry propensties of electromagnetic Green's tensors for complex and bianisotropic media," Progress In Electromagnetics Research, Vol. 48, 145-184, 2004.
doi:10.2528/PIER04020501

4. De Cos, M. E., Y. Alvarez lopez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1467-1478, 2009.
doi:10.1163/156939309789476248

5. Jarchi, S., J. Rashed-Mohassel, and R. Faraji-Dana, "Analysis of microstrip dipole antennas on a layered metamaterial substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 755-764, 2010.
doi:10.1163/156939310791036278

6. Yang, C.-F., M. Cheung, C.-Y. Huang, and J.-S. Sun, "Print a compact single- and quad-band slot antenna on ceramic substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1697-1707, 2010.

7. Gurel, C. S. and E. Yazgan, "Resonant frequency of air gap tuned circular microstrip antenna with anisotropic substrate and superstrate layers," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1731-1740, 2010.

8. Ling, J., S.-X. Gong, B. Lu, H.-W. Yuan, W.-T. Wang, and S. Liu, "A microstrip printed dipole antenna with UC-EBG ground for RCS reduction ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 607-616, 2009.
doi:10.1163/156939309788019868

9. Yeo, J. and D. Kim, "Novel tapered AMC structures for backscattered RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 697-709, 2009.
doi:10.1163/156939309788019804

10. De Cos, M. E., Y. Alvarez Lopez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

11. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269

12. Wei, F., L. Chen, X.-W. Shi, Q.-Y.Wu, and Q.-L. Huang, "Design of compact UWB power divider with one narrow notch-band," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2343-2352, 2010.
doi:10.1163/156939310793675637

13. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband Koch fractal antenna with low backscattering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-72623, 2009.

14. Guo, N., B. M. Sadler, and R. C. Qiu, "Reduced-complexity UWB time-reversal techniques and experimental results," IEEE Trans. Wireless Commun., Vol. 6, No. 12, 4221-4226, Dec. 2007.
doi:10.1109/TWC.2007.060251

15. Lerosey, G., J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and and, "Time reversal of electromagnetic waves," Phys. Rev. Lett., Vol. 92, No. 19, 193904-1-3, May 2004.
doi:10.1103/PhysRevLett.92.193904

16. Lerosey, G., J. de Rosny, A. Tourin, A. Derode, and M. Fink, "Time reversal of wideband microwaves," Appl. Phys. Lett., Vol. 88, 154101-1-4, Apr. 2006.

17. Scott, I., A. Vukovic, and P. Sewell, "Krylov acceleration techniques for time-reversal design applications ," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 4, 917-922, Apr. 2010.
doi:10.1109/TMTT.2010.2042634

18. Jin, Y., J. M. F. Moura, and N. O'donoughue, "Time-reversal in multipleinput multipleoutput radar," IEEE J. Selected Topics in Signal Processing, Vol. 4, No. 1, 210-225, Feb. 2010.
doi:10.1109/JSTSP.2009.2038983

19. Jin, Y. and J. M. F. Moura, "Time-reversal detection using antenna array," IEEE Trans. Signal Processing, Vol. 57, No. 4, 1396-1414, Apr. 2009.
doi:10.1109/TSP.2008.2010425

20. Song, H. C., W. S. Hodgkiss, W. A. Kuperman, T. Akal, and M. Stevenson, "Multiuser communications using passive time reversal," IEEE Journal of Oceanic Engineering, Vol. 32, No. 4, 915-922, Oct. 2007.
doi:10.1109/JOE.2007.904311

21. De Rosny, J. and M. Fink, "Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink ," Phy. Rev. Lett., Vol. 89, 1-4, Sep. 2002.

22. Conti, S. G., P. Roux, and W. A. Kuperman, "Near-field time-reversal amplification," J. Acoust. Soc. Amer., Vol. 121, 3602-3606, Mar. 2007.
doi:10.1121/1.2724238

23. Lerosey, G., J. de Rosny, A. Tourin, and M. Fink, "Focusing beyong the diffraction limit with far-field time reversal," Science, Vol. 315, 1119-1122, Feb. 2007.

24. Rosny, J. D. and M. Fink, "Focusing properties of near-field time reversal," Phys. Rev. A, Vol. 92, 1-4, Dec. 2007.

25. Fink, M., "Time-reversal waves and super resolution," The 4th AIP International Conference and the 1st Congress of the IPIA,, 1-29, 2008.

26. Carminati, R., R. Perrat, J. de Rosny, and M. Fink, "Theory of the time reversal cavity for electromagnetic fields," Optics Lett., Vol. 32, No. 21, 3107-3109, Nov. 2007.
doi:10.1364/OL.32.003107

27. Xiao, S., J. Chen, B.-Z. Wang, and X. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
doi:10.2528/PIER07082501

28. Liu, X., B.-Z.Wang, and L.-W. Li, "Tradeoff of transmitted power in time reversed impulse radio ultra-wideband communications," IEEE Antenna Wireless Propag. Lett., Vol. 8, 1426-1429, 2009.

29. Liu, X., B.-Z. Wang, S. Xiao, and S. Lai, "Post-time-reversed MIMO ultrawideband transmission scheme," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1731-1738, May 2010.
doi:10.1109/TAP.2010.2044318

30. Wang, D., B.-Z. Wang, G.-D. Ge, S.-T. Chen, and M.-C. Tang, "The feasibility of envelope-based time reversal," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 63-74, 2011.
doi:10.1163/156939311793898279

31. Ge, G.-D., B.-Z. Wang, H.-Y. Huang, and G. Zheng, "Super-resolution characteristics of time-reversed electromagnetic wave," Acta. Phys. Sin., Vol. 58, No. 128249, Dec. 2009 ((in Chinese).

32. Ge, G.-D., B.-Z. Wang, D. Wang, and D. Zhao, "Ultra-wideband communication based on super-resolution characteristics of microstructured array with far-field time-reversal," Proc. ICIIE, 264-268, Chengdu, China, Jan. 2011.

33. Carminati, R., M. Nieto-Vesperinas, and J.-J. Greffet, "Reci-procity of evanescent electromagnetic waves," J. Opt. Soc. Am. A, Vol. 15, No. 3, 706-712, Mar. 1998.
doi:10.1364/JOSAA.15.000706

34. Carminati, R., J. J. Saenz, J.-J. Greffet, and M. Nieto-vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A, Vol. 15, No. 3, 012712-1-7, 2000.