Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-29
An Inverse Problem Approach for Parameter Estimation of Interior Permanent Magnet Synchronous Motor
By
Progress In Electromagnetics Research B, Vol. 31, 15-28, 2011
Abstract
The estimation of d- and q-axis parameters is highly desirable, because they are fundamental parameters to many vector control algorithms in the d-q reference frame for fast and accurate responses. Using the finite element method (FEM) for the determination of the interior permanent magnet synchronous motor (IPM) reactance provides an accurate means of determining the field distribution. However, this method might be time consuming. The magnetic circuit modelling approach has been successfully used to model a variety of electrical machine such as IPM motors. This paper deals with the inverse problem methodology for the identification of d- and q-axis synchronous reactance of an IPM motor. The proposed method uses a measured electromotive force (EMF) to compute the objective function. The machine parameters identified by the proposed approach are compared to experimental results.
Citation
Mounir Hadef, Mohamed Rachid Mekideche, Abdesselem Djerdir, and Abdellatif Miraoui, "An Inverse Problem Approach for Parameter Estimation of Interior Permanent Magnet Synchronous Motor," Progress In Electromagnetics Research B, Vol. 31, 15-28, 2011.
doi:10.2528/PIERB11021202
References

1. Lovelace, E. C., T. M. Jahns, and J. H. Lang, "A saturating lumped-parameter model for an interior PM synchronous machine," IEEE Trans. on Industry Applications, Vol. 38, No. 3, 645-650, 2002.
doi:10.1109/TIA.2002.1003413

2. Bernal, F. F., A. G. Cerrada, and R. Faure, "Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement ," IEEE Trans. on Industry Applications, Vol. 37, No. 5, 1265-1272, Sep.-Oct. 2001.
doi:10.1109/28.952501

3. Rezaie, J., M. Gholami, R. Firouzi, T. Alizadeh, and K. Salashoor , "Interior permanent magnet synchronous motor (IPMSM) adaptive genetic parameter estimation," Proceedings of the WCECS, Oct. 2007.

4. Meessen, K. J., P. Thelin, J. Soulard, and E. A. Lomonova, "Inductance calculations of permanent-magnet synchronous machines including flux change and self- and cross-saturations," IEEE Trans. on Magnetics, Vol. 44, No. 10, 2324-2331, Oct. 2008.
doi:10.1109/TMAG.2008.2001419

5. Gieras, J. F., E. Santini, and M. Wing, "Calculation of synchronous reactances of small permanent-magnet alternating-current motors: Comparison of analytical approach and finite element method with measurements," IEEE Trans. on Magnetics, Vol. 34, No. 5, 3712-3720, Sep. 1998.
doi:10.1109/20.718533

6. Rahman, M. A. and P. Zhou, "Determination of saturated parameters of PM motors using loading magnetic fields," IEEE Trans. on Magnetics, Vol. 27, No. 5, 3947-3950, Sep. 1991.
doi:10.1109/20.104967

7. Nee, H. P., L. Lefevre, P. Thelin, and J. Soulard, "Determination of d and q reactances of permanent-magent synchronous motors without measurements of the rotor position ," IEEE Trans. on Industry Applications, Vol. 36, No. 5, 1330-1335, Sep.-Oct. 2000.
doi:10.1109/28.871281

8. Rahman, K. M. and S. Hiti, "Identification of machine parameters of a synchronous motor," IEEE Trans. on Industry Applications, Vol. 41, No. 2, 557-565, Mar.-Apr. 2005.
doi:10.1109/TIA.2005.844379

9. Lee, J. Y., S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, "Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor," IEEE Trans. on Magnetics, Vol. 42, No. 4, 1303-1306, Apr. 2006.
doi:10.1109/TMAG.2006.871951

10. Hwang, C. C., S. M. Chang, C. T. Pan, and T. Y. Chang, "Estimation of parameters of interior permanent magnet synchronous motors," Journal of Magnetism and Magnetic Materials, Vol. 239, 600-603, 2002.
doi:10.1016/S0304-8853(01)00647-3

11. Lee, J. Y., J. W. Kim, J. H. Chang, S. U. Chung, D. H. Kang, and J. P. Hong, "Determination of parameters considering magnetic nonlinearity in solid core transverse flux linear motor for dynamic simulation," IEEE Trans. on Magnetics, Vol. 44, No. 6, 1566-1569, Jun. 2008.
doi:10.1109/TMAG.2007.915894

12. Qing, A., C. K. Lee, and L. Jen, "Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 3, 665-676, Mar. 2001.
doi:10.1109/36.911123

13. Hoole, S. R., S. Subramanian, R. Saldanha, J. L. Coulomb, and J. C. Sabonnadiere, "Inverse problem methodology and finite elements in the identification of cracks, sources, materials, and their geometry in inaccessible locations," IEEE Trans. on Magnetics, Vol. 27, No. 3, 3433-3443, May 1991.
doi:10.1109/20.79086

14. Favennec, Y., V. Labbe, Y. Tillier, and F. Bay, "Identification of magnetic parameters by inverse analysis coupled with finite element modeling ," IEEE Trans. on Magnetics, Vol. 38, No. 6, 3607-3619, Nov. 2002.
doi:10.1109/TMAG.2002.804815

15. Schreiber, J., J. Haueisen, and J. Nenonen, "A new method for choosing the regularization parameter in time-dependent inverse problems and its applications to magnetocardiography," IEEE Trans. on Magnetics, Vol. 40, No. 2, 1104-1107, Mar. 2004.
doi:10.1109/TMAG.2004.824813

16. Huang, C. H., J. X. Li, and S. Kim, "An inverse problem in estimating the strength of contaminant source for groundwater systems," Applied Mathematical Modelling, Vol. 32, 417-431, 2008.
doi:10.1016/j.apm.2006.12.009

17. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subprolem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research , Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

18. Hadamard, J., Lectures on the Cauchy Problem in Linear Partial Differential Equations , Yale University Press, New Haven, 1923.

19. Hanke, M., "Limitations of the L-curve method in ill-posed problems," BIT Numerical Mathematics, Vol. 36, 287-301, 1996.
doi:10.1007/BF01731984

20. Gieras, J. F. and M. Wing, Permanent Magnet Motor Technology: Design and Applications, Marcel Dekker Inc., New York, 2002.