Vol. 18
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-04-15
Analytical Dispersion Characteristic of a Gap-Groove Waveguide
By
Progress In Electromagnetics Research M, Vol. 18, 55-72, 2011
Abstract
A new type of waveguide based on the gap waveguide concept is here proposed and called gap-groove waveguide. Its design is based on the realization of a groove on a metal, facing an artificial surface which creates a high impedance surface (HIS) boundary condition. This condition is achieved here by employing a structure of closely packed metallic pins, known as bed of nails. The type of modes that can propagate in the gapgroove waveguide are similar to the ones of a standard waveguide but in this case there is no need of electrical connection. This is a potential advantage, especially when working at high frequencies. The dispersion characteristic of the gap-groove waveguide is derived by solving an eigenvalue problem, settled through a resonance condition at the interface between the groove and the bed of nails. The eigenvalues are associated with the modes propagating in the waveguide, and their dispersion characteristic is analyzed and compared with full wave simulations. A procedure to maximize the bandwidth is also provided, based on an appropriate choice of the geometrical parameters. Furthermore, the field distribution and the modal impedance of the fundamental mode are investigated.
Citation
Alessia Polemi, Eva Rajo-Iglesias, and Stefano Maci, "Analytical Dispersion Characteristic of a Gap-Groove Waveguide," Progress In Electromagnetics Research M, Vol. 18, 55-72, 2011.
doi:10.2528/PIERM11020806
References

1. Kildal, P.-S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Loocal metamaterial-based waveguides in gaps between parallel metal plates," IEEE Antennas and Wireless Propagation Letters (AWPL), Vol. 8, 84-87, Dec. 2009.
doi:10.1109/LAWP.2008.2011147

2. Valero-Nogueira, , A., E. Alfonso, J. I. Herranz, and P.-S. Kildal, "Experimental demonstration of local quasi-TEM gap modes in single-hard-wall waveguides," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 9, 536-538, Sep. 2009.
doi:10.1109/LMWC.2009.2027051

3. Rajo-Iglesias, E., A. U. Zaman, and P.-S. Kildal, "Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 1, 31-33, Dec. 2009.
doi:10.1109/LMWC.2009.2035960

4. Skobelev, S. P. and P.-S. Kildal, "A new type of the quasi-TEM eigenmodes in a rectangular waveguide with one corrugated hard wall," Progress In Electromagnetics Research, Vol. 102, 143-157, 2010.
doi:10.2528/PIER09122305

5. Bosiljevac, M., Z. Sipus, and P.-S. Kildal, "Construction of Green's functions of parallel plates with periodic texture with application to gap waveguides --- A plane wave spectral domain approach," IET Microwaves Antennas and Propagation Special Issue on Microwave Metamaterials: Application to Devices, Circuits and Antennas, Vol. 4, No. 11, 1799-1810, Nov. 2010.

6. Rajo-Iglesias, E. and P.-S. Kildal, "Numerical studies of bandwidth of parallel plate cut-off realized by bed of nails, corrugations and mushroom-type EBG for use in gap waveguides," IET Microwaves Antennas and Propagation, Vol. 5, No. 3, 282-289, 2011.
doi:10.1049/iet-map.2010.0073

7. Kildal, P.-S., A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguides in bed of nails for parallel plate mode suppression," IET Microwaves Antennas and Propagation, Vol. 5, No. 3, 262-270, 2011.
doi:10.1049/iet-map.2010.0089

8. Polemi, A., S. Maci, and P.-S. Kildal, "Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails," IEEE Trans. Antennas Propagat., Vol. 59, No. 3, 904-913, Mar. 2010.
doi:10.1109/TAP.2010.2103006

9. Polemi, A. and S. Maci, "Closed form expressions for the modal dispersion equations and for the characteristic impedance of a metamaterial based gap waveguide," IET Microwaves Antennas and Propagation Special Issue on Microwave Metamaterials: Application to Devices, Circuits and Antennas, Vol. 4, No. 8, 1073-1080, Aug. 2010.

10. Silveirinha, M. G., C. A. Fernandes, and J. R. Costa, "Electromagnetic characterization of textured surfaces formed by metallic pins," IEEE Trans. Antennas Propagat., Vol. 56, No. 2, 405-415, Feb. 2008.
doi:10.1109/TAP.2007.915442

11. Rajo-Iglesias, E. and P.-S. Kildal, "Groove gap waveguide: A rectangular waveguide between contactless metal plates enabled by parallel-plate cut-off," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 2010.

12. Thibaut, , J.-M. and G. Roussy, "Practical microwave circuits for groove waveguides," Annals of Telecommunications, Vol. 36, No. 3, 187-195, 1981.

13. Arcioni, P., M. Bressan, F. Broggi, G. Conciauro, L. Perregrini, and P. Pierini, "The groove guide as an interaction structure for a microwave FEL," Nuclear Instruments and Methods in Physics Research A, Vol. 358, No. 1--3, 108-111, Apr. 1995.
doi:10.1016/0168-9002(94)01267-9

14. Lu, M., F. Wei, Z. Ren, and Z. Yang, "On the dominant mode in closed trapezoidal-groove guide by finite element method," International Journal of Infrared and Millimeter Waves, Vol. 20, No. 4, 645-654, 1999.
doi:10.1023/A:1022648724152

15. Cheng, , Y., G. Li, S. Wang, B. Z. Cao, and F. Y. Xu, "Analysis for squarely V-shaped groove guide," PIERS Proceedings, 555-557, Moscow, Russia, Aug. 18-21, 2009.

16. Kildal, P.-S., "Definition of artificially soft and hard surfaces for electromagnetic waves," Electronic Letters, Vol. 24, No. 3, 168-170, Feb. 1988.
doi:10.1049/el:19880112

17. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B, Vol. 67, 103-113, Oct. 2003.

18., www.mathworks.com.

19., www.cst.com.